Si anode has drawn growing attention because of its features of large specific capacity, low electrochemical potential, and high natural abundance. However, it suffers from severe electrochemical irreversibility due to its large volume change during cycling. In spite of the achievement of improved electrochemical performance after compositing with carbon materials, most of the reported Si/C composite anodes lack a simple preparation process. To obtain a promising Si-based anode material, both simple preparation process and improved performance are necessary. Herein, inspired by the structure of shock proof foam, a novel structure of Si-based composite (Si@FeNO@P), consisting of Si nanoparticles embedded within a highly graphitized FeC/FeO hybrid nanoparticle-interspersed foam-like porous carbon matrix, has been constructed using a simple method, consisting of simple mixing, drying, and carbonization processes. Thus, the well-designed composite structure effectively mitigates issues resulting from volumetric change of the Si during cycle and hence improves its performance significantly. The research results confirm outstanding performance of the Si@FeNO@P anode in the aspects of cycle durability, specific capacity, and rate capability, with 1116.1 (250 cycle), 858.1 (500 cycle), and 503.1 (500 cycle) mA h g at 100, 1000, and 5000 mA g, respectively. By comparing the performance and structure of Si@FeNO@P with other control samples, it was substantiated that the outstanding performances of the Si@FeNO@P anode depend on the synergistic effects of the well-designed unique carbon matrix, conductive FeC, and FeO- derived metallic Fe nanoparticles during cycling. The outstanding electrochemical performance and simple preparation route make the Si@FeNO@P anode promising for lithium-ion battery applications. This work also gives useful insights into the development of high-performance Si-based anodes with simple practical methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3nr02723f | DOI Listing |
Sci Rep
December 2024
Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, Brno, Czechia, Czechia.
Magnetorheological (MR) fluids can be utilized in one of the fundamental operating modes of which the gradient pinch mode has been the least explored. In this unique mode non-uniform magnetic field distributions are taken advantage of to develop a so-called Venturi-like contraction in MR fluids. By adequately directing magnetic flux the material can be made solidified in the regions near the flow channel wall, thus creating a passage in the middle of the channel for the fluid to pass through.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China.
The development of flexible, intelligent, and lightweight optoelectronic devices based on flexible transparent conductive electrodes (FTCEs) utilizing silver nanowires (AgNWs) has garnered increasing attention. However, achieving low surface resistance, strong adhesion to the flexible substrate, low surface roughness, and green degradability remains a challenge. Here, a composite electrode combining natural polymer cellulose nanofibers (TCNFs) with AgNWs was prepared.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
Polyurethane sponge is frequently selected as a substrate material for constructing flexible compressible sensors due to its excellent resilience and compressibility. However, being highly hydrophilic and flammable, it not only narrows the range of use of the sensor but also poses a great potential threat to human safety. In this paper, a conductive flexible piezoresistive sensor (CHAP-PU) with superhydrophobicity and high flame retardancy was prepared by a simple dip-coating method using A-CNTs/HGM/ADP coatings deposited on the surface of a sponge skeleton and modified with polydimethylsiloxane.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Agricultural Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
This study aims to explore the redispersibility of dehydrated nanocellulose with p-toluenesulfonic acid (p-TsOH) fractionated lignin as an eco-friendly and cost-effective capping agent, to cope with the challenge of irreversible agglomeration and thus loss of nanoscale of nanocellulose upon dehydration. The intermixing of nanocellulose and p-TsOH fractionated lignin was achieved using an aqueous ethanol solution as the medium and films of lignin-blending cellulose nanofibers (L + CNF) with excellent redispersing properties were obtained after facile air-drying. With 0.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici Research Centre, P.le E. Fermi 1, Portici, 80055 Naples, Italy.
In recent years, the morphology control of semiconductor nanomaterials has been attracting increasing attention toward maximizing their functional properties and reaching their end use in real-world devices. However, the development of easy and cost-effective methods for preparing large-scale patterned semiconductor structures on flexible temperature-sensitive substrates remains ever in demand. In this study, vapor post-treatment (VPT) is investigated as a potential, simple and low-cost post-preparative method to morphologically modify gravure-printed zinc oxide (ZnO) nanoparticulate thin films at low temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!