Cytokeratin 19 fragment antigen 21-1 (CYFRA21-1) is a protein fragment dissolved in the blood after apoptosis of lung epithelial cells, which is a predictive biomarker for the diagnosis of non-small cell lung cancer (NSCLC). Detection of serum CYFRA21-1 has a significant clinical value in diagnosis, monitoring and prognosis of NSCLC. Herein, a novel electrochemical immunosensor was constructed for the sensitive detection of CYFRA21-1. First, superconductive carbon black (KB) functionalized polyethyleneimine (PEI)-gold nanoparticles (AuNPs) were covered on the surface of methylene blue (MB) and used as substrate materials to immobilize the CYFRA21-1 antibody. Then, target CYFRA21-1 was successfully detected using an electrochemical immunosensor through specific recognition of antigen and antibody. The zirconium-based metal organic framework of PCN-222(Fe) with a large pore size and three-dimensional (3D) structure can absorb abundant AuNPs through strong electrostatic interaction, which enhances the conductive properties of PCN-222(Fe) and prevents the self-aggregation of AuNPs. However, PCN-222(Fe) with peroxidase-like activity can catalyze the generation of hydroxyl free radicals (˙OH) from HO, which oxidized MB, leading to a decrease in the current signal. The signal response to the degradation of MB was recorded using differential pulse voltammetry (DPV). This indirect method of immunosensor offered a new strategy to address the limitations imposed by the poor conductivity of PCN-222(Fe), further enabling the amplification of the signal through the oxidative degradation of MB. Compared with traditional electrochemical immunosensors, this method has the advantages of a stable current signal and good reproducibility, providing a promising reference for the broad application of PCN-222(Fe) in electrochemical biosensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3tb01245j | DOI Listing |
Radiat Oncol J
December 2024
Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine, Seoul, Republic of Korea.
Purpose: This report offers a detailed examination of the inception and current state of the Heavy-ion Therapy Center (HITC) at the Yonsei Cancer Center (YCC), setting it apart as the world's first center equipped with a fixed beam and two superconducting gantries for carbon-ion radiation therapy (CIRT).
Materials And Methods: Preparations for CIRT at YCC began in 2013; accordingly, this center has completed a decade of meticulous planning and culminating since the operational commencement of the HITC in April 2023.
Results: This report elaborates on the clinical preparation for adopting CIRT in Korea.
Biosens Bioelectron
March 2025
School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, 721302, West Bengal, India. Electronic address:
Monitoring HO levels in live cells is essential due to its superior stability and possible severity inside the cell. The quest for a superior platform capable of detecting cellular-level hydrogen peroxide (HO) concentrations without necessitating the use of high-cost enzymes is of utmost importance. Here, the quantification of intracellular HO concentrations has been performed using silver metal polymer-based nonenzymatic electrochemical detection.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland.
Chem Sci
December 2024
Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 China
Biomass holds significant potential for large-scale synthesis of hard carbon (HC), and HC is seen as the most promising anode material for sodium-ion batteries (SIBs). However, designing a HC anode with a rich pore structure, moderate graphitization and synthesis through a simple process using a cost-effective precursor to advance SIBs has long been a formidable challenge. This is primarily because high temperatures necessary for pore regulation invariably lead to excessive graphitization.
View Article and Find Full Text PDFSmall
December 2024
LiB Materials Research Group, Research Institute of Industrial Technology and Science (RIST), POSCO Global R and D Center, Sondohwahak-ro 100, Yeonsu-gu, Incheon, 21985, Republic of Korea.
The demand for all-solid-state batteries (ASSBs) featuring credible LiPSCl argyrodite (LPSCl) electrolytes is increasing, driving interest in exploring suitable current collectors for ASSBs. Copper (Cu), used as a current collector in traditional lithium-ion batteries, exhibits significant instability in LPSCl-ASSBs. In this study, the effectiveness of iron (Fe) is systematically investigated as an alternative current collector in LPSCl-ASSBs and compare its performance to that of Cu.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!