Recently, spiropyran-based composites have gained more attention on account of their stimuli-responsive essence, especially of the fascinating and green photo stimulus. However, the great dipole moment change between the ring-opened merocyanine and ring-closed spiropyran requires a large free volume available for isomerization, which significantly restrains the photoisomerization of spiropyran-based nanocomposites. Herein, a fascinating pathway by regulating the states both of spiropyran and the immobilized nanoparticle supports was put forward to facilitate the photoisomerization. The results demonstrated that the spiropyran grafting percentage of 5.18% and immobilized supports with less aggregation, high specific surface area, large pore size, and noncrystalline structure were suitable to fabricate spiropyran-based nanocomposites, which showed a significant improvement for Pb and Cr removal from aqueous solution on account of free photoisomerization of spiropyran on the support's surface. This work will pave the pathway to extend the exploitation of spiropyran-based nanocomposites in various fields such as biotechnology, physiology, and electronics to photonics and environmental-friendly fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c06774 | DOI Listing |
ACS Appl Mater Interfaces
August 2023
College of Bioresources Chemical and Materials Engineering, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
Anal Chem
December 2013
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China.
Fluoride ion (F(-)), the smallest anion, exhibits considerable significance in a wide range of environmental and biochemical processes. To address the two fundamental and unsolved issues of current F(-) sensors based on the specific chemical reaction (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!