The bacterial pathogen is an urgent global health problem due to increasing numbers of infections, coupled with rampant antibiotic resistance. Vaccines against gonorrhea are being prioritized to combat drug-resistant Meningococcal serogroup B vaccines such as 4CMenB are predicted by epidemiology studies to cross-protect individuals from natural infection with and elicit antibodies that cross-react with Evaluation of vaccine candidates for gonorrhea requires a suite of assays for predicting efficacy in vitro and in animal models of infection, including the role of antibodies elicited by immunization. Here we present assays to evaluate antibody functionality after immunization: antibody binding to intact serum bactericidal activity, and opsonophagocytic killing activity using primary human neutrophils (polymorphonuclear leukocytes). These assays were developed with purified antibodies against and used to evaluate serum from mice that were vaccinated with 4CMenB or given alum as a negative control. Results from these assays will help prioritize gonorrhea vaccine candidates for advanced preclinical to early clinical study and will contribute to identifying correlates and mechanisms of immune protection against .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418180PMC
http://dx.doi.org/10.1101/2023.08.03.551882DOI Listing

Publication Analysis

Top Keywords

vaccine candidates
8
evaluating vaccine-elicited
4
vaccine-elicited antibody
4
antibody activities
4
activities cross-protective
4
cross-protective responses
4
responses elicited
4
elicited 4cmenb
4
4cmenb meningococcal
4
meningococcal vaccine
4

Similar Publications

Introduction: Ebola virus (EBOV) is a highly lethal RNA virus that causes severe hemorrhagic fever in humans and non-human primates. The lack of effective treatment or vaccine for this pathogen poses a serious threat to a global pandemic. Therefore, it is imperative to explore new drugs and therapies to combat this life-threatening infection.

View Article and Find Full Text PDF

Expanding the Potential of Circular RNA (CircRNA) Vaccines: A Promising Therapeutic Approach.

Int J Mol Sci

January 2025

State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China.

In recent years, circular RNAs (circRNAs) have garnered significant attention due to their unique structure and function, positioning them as promising candidates for next-generation vaccines. The circRNA vaccine, as an RNA vaccine, offers significant advantages in preventing infectious diseases by serving as a vector for protein expression through non-canonical translation. Notably, circRNA vaccines have demonstrated enduring antigenic expression and generate a larger percentage of neutralizing antibodies compared to mRNA vaccines administered at the same dosage.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) from can elicit immune responses, positioning them as promising acellular vaccine candidates. We characterized EVs from an avirulent cell wall mutant (Δ) and evaluated their protective potential against invasive candidiasis. EVs from the yeast (YEVs) and hyphal (HEVs) forms of the SC5314 wild-type strain were also tested, yielding high survival rates with SC5314 YEV (91%) and YEV immunization (64%).

View Article and Find Full Text PDF

Zika virus (ZIKV) is a medically important mosquito-borne orthoflavivirus, but no vaccines are currently available to prevent ZIKV-associated disease. In this study, we compared three recombinant chimeric viruses developed as candidate vaccine prototypes (rJEV/ZIKV, rJEV/ZIKV, and rJEV/ZIKV), in which the two neutralizing antibody-inducing prM and E genes from each of three genetically distinct ZIKV strains were used to replace the corresponding genes of the clinically proven live-attenuated Japanese encephalitis virus vaccine SA-14-2 (rJEV). In WHO-certified Vero cells (a cell line suitable for vaccine production), rJEV/ZIKV exhibited the slowest viral growth, formed the smallest plaques, and displayed a unique protein expression profile with the highest ratio of prM to cleaved M when compared to the other two chimeric viruses, rJEV/ZIKV and rJEV/ZIKV, as well as their vector, rJEV.

View Article and Find Full Text PDF

Human challenge experiments could accelerate tuberculosis vaccine development. This requires a safe Mycobacterium tuberculosis (Mtb) strain that can both replicate in the host and be reliably cleared. Here we genetically engineered Mtb strains encoding up to three kill switches: two mycobacteriophage lysin operons negatively regulated by tetracycline and a degron domain-NadE fusion, which induces ClpC1-dependent degradation of the essential enzyme NadE, negatively regulated by trimethoprim.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!