Language comprehension involves integrating low-level sensory inputs into a hierarchy of increasingly high-level features. Prior work studied brain representations of different levels of the language hierarchy, but has not determined whether these brain representations are shared between written and spoken language. To address this issue, we analyzed fMRI BOLD data recorded while participants read and listened to the same narratives in each modality. Levels of the language hierarchy were operationalized as , where each timescale refers to a set of spectral components of a language stimulus. Voxelwise encoding models were used to determine where different timescales are represented across the cerebral cortex, for each modality separately. These models reveal that between the two modalities timescale representations are organized similarly across the cortical surface. Our results suggest that, after low-level sensory processing, language integration proceeds similarly regardless of stimulus modality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418083PMC
http://dx.doi.org/10.1101/2023.01.06.522601DOI Listing

Publication Analysis

Top Keywords

low-level sensory
8
brain representations
8
levels language
8
language hierarchy
8
language
7
cortical representation
4
representation language
4
language timescales
4
timescales shared
4
shared reading
4

Similar Publications

Perceptual awareness results from an intricate interaction between external sensory input and the brain's spontaneous activity. Pre-stimulus ongoing activity influencing conscious perception includes both brain oscillations in the alpha (7 to 14 Hz) and beta (14 to 30 Hz) frequency ranges and aperiodic activity in the slow cortical potential (SCP, <5 Hz) range. However, whether brain oscillations and SCPs independently influence conscious perception or do so through shared mechanisms remains unknown.

View Article and Find Full Text PDF

Background: A low level of response (LR) to alcohol is a known risk factor for alcohol use disorder (AUD). Although higher total body water (TBW) is associated with lower blood alcohol concentrations and reduced responses following alcohol consumption, the relationship between morphometric measures such as body mass index (BMI) and LR is less clear. This study aimed to examine the relationship between BMI and LR to alcohol, and the contribution of TBW to this relationship.

View Article and Find Full Text PDF

Integrating Vision and Olfaction via Multi-Modal LLM for Robotic Odor Source Localization.

Sensors (Basel)

December 2024

Department of Computer Science, Louisiana Tech University, 201 Mayfield Ave, Ruston, LA 71272, USA.

Odor source localization (OSL) technology allows autonomous agents like mobile robots to localize a target odor source in an unknown environment. This is achieved by an OSL navigation algorithm that processes an agent's sensor readings to calculate action commands to guide the robot to locate the odor source. Compared to traditional 'olfaction-only' OSL algorithms, our proposed OSL algorithm integrates vision and olfaction sensor modalities to localize odor sources even if olfaction sensing is disrupted by non-unidirectional airflow or vision sensing is impaired by environmental complexities.

View Article and Find Full Text PDF

This case study explores the psychological and neuropsychological traits of a 55-year-old woman, D.R., who has Cotard's, believing her torso has dissolved and food bypasses her legs.

View Article and Find Full Text PDF

Objectives: The study aimed to compare the effects of separate and simultaneous application of Tecar therapy and low-level laser therapy on neurological symptoms of type 2 diabetic patients.

Patients And Methods: In this randomized control trial conducted between November 2021 and February 2022, 45 patients (30 females, 15 males; mean age: 65.7±7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!