Abstracts: Skeletal muscles have a high demand for ATP, which is met largely through mitochondria oxidative phosphorylation. Autophagy is essential for the maintenance of skeletal muscle mass under catabolic conditions. This study investigated the effect of uncoupling mitochondrial oxidative phosphorylation on autophagy in chicken skeletal muscle. Chick myotubes were incubated with the mitochondrial uncoupler carbonyl cyanide m-chlorophenyl hydrazone (CCCP) at 25 μM for 3h. CCCP prevented the phosphorylation of p70 ribosomal S6 kinase 1 (Thr389), S6 ribosomal protein (Ser240/244), and eukaryotic translation initiation factor 4E-binding protein 1 (Thr37/46), which are the measures of the mechanistic target of rapamycin complex 1 (mTORC1) activity. CCCP significantly increased cytoplasmic and mitochondrial LC3-II content, which act as indices of index for autophagosome formation and mitophagy, respectively, but did not influence the expression of autophagy-related genes LC3B, GABARAPL1, and ATG12. Finally, surface sensing of translation method revealed that protein synthesis, a highly energy consuming process, was significantly decreased upon CCCP treatment. These results indicate that the uncoupling of mitochondrial oxidative phosphorylation stimulates autophagy and inhibits protein synthesis through mTORC1 signaling in chick myotube cultures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10410138PMC
http://dx.doi.org/10.2141/jpsa.2023022DOI Listing

Publication Analysis

Top Keywords

oxidative phosphorylation
16
uncoupling mitochondrial
12
mitochondrial oxidative
12
chick myotube
8
myotube cultures
8
phosphorylation autophagy
8
skeletal muscle
8
protein synthesis
8
mitochondrial
5
phosphorylation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!