Background And Aim: Sulfadiazine, one of the sulfonamide group's active compounds, is widely used for therapeutic production against several diseases. Veterinary drug residues can have a significant impact on human health conditions. This study aimed to develop a prototype of rapid test devices (RTDs) for detecting sulfadiazine residues on chicken carcasses based on the color indication.
Materials And Methods: Seven samples of carcasses collected from traditional breeders in Surabaya-Indonesia were prepared and tested using RTDs. This sample represents the population considering that in the last report, the use of antibiotics was more than 40%, while the ability to monitor RTDs was estimated at 100. The standard color of purple by Hex code standard color or decimal code color was used to compare the positive samples. A light-emitting diode (LED) lamp was used to observe purple color. Analysis of sulfonamides resulting from RTDs was compared using a ultraviolet-visible spectrophotometer.
Results: Sulfonamides contamination levels of 50% and 100% were detected at concentrations of 0.472 μg/mL and 0.642 μg/mL, respectively. Sulfonamides contamination that was <0.395 μg/mL did not appear purple.
Conclusion: The study's findings showed that RTDs can be used to detect sulfonamides residues at a limit of detection 0.5 mg/mL after a 45 min exposure to an LED operating at a wavelength of 980 nm (p < 0.05). The limitation of RTDs was not being able to monitor the presence of residues bound in fat samples. Rapid test devices can be developed for commonly monitoring devices due to the limited technology available in the market.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421549 | PMC |
http://dx.doi.org/10.14202/vetworld.2023.1252-1259 | DOI Listing |
Microsyst Nanoeng
January 2025
Biological Design Center, Boston University, Boston, MA, USA.
Droplet microfluidics enable high-throughput screening, sequencing, and formulation of biological and chemical systems at the microscale. Such devices are generally fabricated in a soft polymer such as polydimethylsiloxane (PDMS). However, developing design masks for PDMS devices can be a slow and expensive process, requiring an internal cleanroom facility or using an external vendor.
View Article and Find Full Text PDFPsychooncology
January 2025
Cancer Prevention Precision Control Institute, Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA.
Background: Although scanxiety is common and impactful for people with advanced lung cancer, few interventions address this psychosocial concern.
Aims: To create a stress management program for scanxiety.
Methods: We conducted a structured intervention adaptation process guided by the ADAPT-ITT framework.
Comput Struct Biotechnol J
December 2024
Centre for Mobile Innovation (CMI), Sheridan College, Oakville, Ontario, Canada.
In this paper, we introduce -a Mixed Reality (MR) system designed for healthcare professionals to monitor patients in wards or clinics. We detail the design, development, and evaluation of , which integrates real-time vital signs from a biosensor-equipped wearable, . The system generates holographic visualizations, allowing healthcare professionals to interact with medical charts and information panels holographically.
View Article and Find Full Text PDFJ Biomater Appl
January 2025
Chemistry Department, Surendra Institute of Engineering and Management, Siliguri, India.
The rapid advancement of 3D printing technology has revolutionized biomedical engineering, enabling the creation of complex and personalized prototypes. Thermal properties play a crucial role in the performance and safety of these biomedical devices. Understanding their thermal behavior is essential for ensuring their effectiveness, reliability, and compatibility with the human body.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland.
This article presents the authors' design of an electronic stethoscope intended for use during online medical consultations for patient auscultation. The goal of the project was to design an instrument that is durable, user-friendly, and affordable. Existing electronic components were used to create the device and a traditional single-sided chest piece.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!