We present a method and a simple system for high-pH RP-LC peptide fractionation of small sample amounts (30-60 µg), at micro-flow rates with micro-liter fraction collection using ammonium bicarbonate as an optimized buffer for system stability and robustness. The method is applicable to targeted mass spectrometry approaches and to in-depth proteomic studies where the amount of sample is limited. Using targeted proteomics with peptide standards, we present the method's analytical parameters, and potential in increasing the detection of low-abundance proteins that are difficult to quantify with direct targeted or global LC-MS analyses. This fractionation system increased peptide signals by up to 18-fold, while maintaining high quantitative precision, with high fractionation reproducibility across varied sample sets. In real applications, it increased the detection of targeted endogenous peptides by two-fold in a 25 cell-cycle-control protein panel, and in-depth MS analyses of nuclear extracts, it allowed the detection of up to 8,896 proteins with 138,417 peptides in 24-concatenated fractions compared to 3,344 proteins with 23,093 peptides without fractionation. In a relevant biological problem of CDK4/6-inhibitors and breast cancer, the method reproduced known information and revealed novel insights, highlighting that it can be successfully applied in studies involving low-abundance proteins and limited samples. •Tested nine high-pH buffer/solvent systems to obtain a robust, effective, and reproducible micro-flow fractionation method which was devoid of commonly encountered LC clogging/pressure issues after months of use.•Peptide enrichment method to improve detection and quantitation of low-abundance proteins in targeted and in-depth proteomic studies.•Can be applied to diverse protein samples where the available amount is limited.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413349 | PMC |
http://dx.doi.org/10.1016/j.mex.2023.102306 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!