Engineering DNA-based cytoskeletons for synthetic cells.

Interface Focus

Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany.

Published: October 2023

The development and bottom-up assembly of synthetic cells with a functional cytoskeleton sets a major milestone to understand cell mechanics and to develop man-made machines on the nano- and microscale. However, natural cytoskeletal components can be difficult to purify, deliberately engineer and reconstitute within synthetic cells which therefore limits the realization of multifaceted functions of modern cytoskeletons in synthetic cells. Here, we review recent progress in the development of synthetic cytoskeletons made from deoxyribonucleic acid (DNA) as a complementary strategy. In particular, we explore the capabilities and limitations of DNA cytoskeletons to mimic functions of natural cystoskeletons like reversible assembly, cargo transport, force generation, mechanical support and guided polymerization. With recent examples, we showcase the power of rationally designed DNA cytoskeletons for bottom-up assembled synthetic cells as fully engineerable entities. Nevertheless, the realization of dynamic instability, self-replication and genetic encoding as well as contractile force generating motors remains a fruitful challenge for the complete integration of multifunctional DNA-based cytoskeletons into synthetic cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10415745PMC
http://dx.doi.org/10.1098/rsfs.2023.0028DOI Listing

Publication Analysis

Top Keywords

synthetic cells
24
cytoskeletons synthetic
12
dna-based cytoskeletons
8
dna cytoskeletons
8
synthetic
7
cytoskeletons
6
cells
6
engineering dna-based
4
cells development
4
development bottom-up
4

Similar Publications

Enhancing Flexible Perovskite Photovoltaic Cells and Modules Through Light-Trapping and Light-Shifting Strategies.

Small Methods

January 2025

Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong, 510632, China.

Flexible perovskite photovoltaic devices are typically constructed on flexible polyethylene naphthalate (PEN) substrates, which exhibit near-ultraviolet absorption and high visible-light reflection, leading to significant optical losses. To address this issue, a reusable optical-management sticker tailored for flexible substrates has been proposed in this work. The sticker incorporates a light-shifting material that converts near-ultraviolet light into visible light, enabling photoelectric conversion of near-ultraviolet light.

View Article and Find Full Text PDF

Engineered extracellular vesicles as "supply vehicles" to alleviate type 1 diabetes.

Extracell Vesicles Circ Nucl Acids

November 2024

The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, Guangdong, China.

Recent findings have indicated that the deficiency of inhibitory programmed cell death ligand 1 (PD-L1) and galectin-9 (Gal-9) in pancreatic β-cells is associated with the progression of type 1 diabetes (T1D). This suggests that exogenous PD-L1 and Gal-9 may have promising potential as therapeutics for the treatment of T1D. In light of these reports, a recent work investigated the potential of artificial extracellular vesicles (aEVs) with the presentation of PD-L1 and Gal-9 ligands (PD-L1-Gal-9 aEVs) as a treatment for T1D, with the findings published in .

View Article and Find Full Text PDF

Enhancing NK cell-mediated tumor killing of B7-H6 cells with bispecific antibodies targeting allosteric sites of NKp30.

Mol Ther Oncol

March 2025

Early Protein Supply and Characterization, Merck Healthcare KGaA, 64293 Darmstadt, Germany.

In this work, we report the discovery and engineering of allosteric variable domains of the heavy chain (VHHs) derived from camelid immunization targeting NKp30, an activating receptor on natural killer (NK) cells. The aim was to enhance NK cell-mediated killing capacities by identifying VHHs that do not compete with the natural ligand of NKp30:B7-H6, thereby maximizing the recognition of B7-H6 tumor cells. By relying on the DuoBody technology, bispecific therapeutic antibodies were engineered, creating a panel of bispecific antibodies against NKp30xEGFR (cetuximab moiety) or NKp30xHER2 (trastuzumab moiety), called natural killer cell engagers (NKCEs).

View Article and Find Full Text PDF

Directed evolution of an orthogonal transcription engine for programmable gene expression in eukaryotes.

iScience

January 2025

Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA.

T7 RNA polymerase (RNAP) has enabled orthogonal control of gene expression and recombinant protein production across diverse prokaryotic host chassis organisms for decades. However, the absence of 5' methyl guanosine caps on T7 RNAP-derived transcripts has severely limited its utility and widespread adoption in eukaryotic systems. To address this shortcoming, we evolved a fusion enzyme combining T7 RNAP with the single subunit capping enzyme from African swine fever virus using .

View Article and Find Full Text PDF

We and others previously found that a misannotated long noncoding RNA encodes for a conserved mitochondrial transmembrane microprotein named Mitoregulin (Mtln). Beyond an established role for Mtln in lipid metabolism, Mtln has been shown to broadly influence mitochondria, boosting respiratory efficiency and Ca retention capacity, while lowering ROS, yet the underlying mechanisms remain unresolved. Prior studies have identified possible Mtln protein interaction partners; however, a lack of consensus persists, and no claims have been made about Mtln's structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!