A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Removal of Phosphate by Adsorption with 2-Phenylimidazole-Modified Porous ZIF-8: Powder and Chitosan Spheres. | LitMetric

Removal of Phosphate by Adsorption with 2-Phenylimidazole-Modified Porous ZIF-8: Powder and Chitosan Spheres.

ACS Omega

International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China.

Published: August 2023

Due to rapid socioeconomic development, increased phosphorus concentrations can cause eutrophication of water bodies, with devastating effects on environmental sustainability and aquatic ecosystems. In this study, ZIF-8-PhIm was prepared for phosphorus removal using 2-phenylimidazole via the solvent-assisted ligand exchange (SALE) method. The structure and composition of ZIF-8-PhIm were characterized by various methods, including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), H nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) analysis. Compared to the ZIF-8 material, it exhibited a multistage pore structure with larger pore capacity and pore size, increased hydrophilicity, exposure of more adsorption sites, and also stronger electrostatic interaction. Under optimized conditions ( = 298 K, = 150 mg/L, dose = 0.2 g/L), the adsorption capacity of ZIF-8-PhIm reached 162.93 mg/g, which was greater than that of the ZIF-8 material (92.07 mg/g). The Langmuir isotherm and pseudo-second-order kinetic models were suitable for describing the phosphate adsorption of ZIF-8-PhIm. The main effects of ZIF-8-PhIm on phosphate adsorption were Zn-O-P bonding and electrostatic interactions. It also had good regeneration properties. The ZIF-8-PhIm/CS spheres were prepared using chitosan (CS) as the cross-linking agent. The results of dynamic adsorption experiments on the spheres showed a saturation capacity of 85.69 mg/g and a half-penetration time of 514.15 min at 318 K according to the fitted results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413465PMC
http://dx.doi.org/10.1021/acsomega.3c02671DOI Listing

Publication Analysis

Top Keywords

phosphate adsorption
12
zif-8 material
8
adsorption
6
zif-8-phim
5
removal phosphate
4
adsorption 2-phenylimidazole-modified
4
2-phenylimidazole-modified porous
4
porous zif-8
4
zif-8 powder
4
powder chitosan
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!