Cognitive function represents a complex neurophysiological capacity of the human brain, encompassing a higher level of neural processing and integration. It is widely acknowledged that the cerebrum plays a commanding role in the regulation of cognitive functions. However, the specific role of the cerebellum in cognitive processes has become a subject of considerable scholarly intrigue. In 1998, Schmahmann first proposed the concept of "cognitive affective syndrome (CCAS)," linking cerebellar damage to cognitive and emotional impairments. Since then, a substantial body of literature has emerged, exploring the role of the cerebellum in cognitive neurological function. The cerebellum's adjacency to the cerebral cortex, brainstem, and spinal cord suggests that the cerebral-cerebellar network loops play a crucial role in the cerebellum's participation in cognitive neurological functions. In this review, we comprehensively examine the recent literature on the involvement of the cerebellum in cognitive functions from three perspectives: the cytological basis of the cerebellum and its anatomical functions, the cerebellum and cognitive functions, and Crossed cerebellar diaschisis. Our aim is to shed light on the role and mechanisms of the cerebellum in cognitive neurobrain networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416251 | PMC |
http://dx.doi.org/10.3389/fnhum.2023.1197459 | DOI Listing |
Orphanet J Rare Dis
December 2024
Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.
Background: Spinocerebellar ataxias (SCAs) encompass a wide spectrum of inherited neurodegenerative diseases, primarily characterized by pathological changes in the cerebellum, spinal cord, and brainstem degeneration. Autosomal dominant spinocerebellar ataxia type 48 (SCA48) is a newly identified subtype of SCA, marked by early-onset ataxia and cognitive impairment, and is associated with mutations in the STIP1 homology and U-box-containing protein 1 (STUB1) gene. The STUB1 gene encodes the protein CHIP (C-terminus of HSC70-interacting protein) which functions as E3 ubiquitin ligase and is crucial to the development of neural systems.
View Article and Find Full Text PDFJ Neurodev Disord
December 2024
Carolina Institute for Developmental Disabilities (CIDD), University of North Carolina at Chapel Hill, 101, Renee Lynne Court, Carrboro, NC, 27510, USA.
Background: Down syndrome (DS) is the most common congenital neurodevelopmental disorder, present in about 1 in every 700 live births. Despite its prevalence, literature exploring the neurobiology underlying DS and how this neurobiology is related to behavior is limited. This study fills this gap by examining cortical volumes and behavioral correlates in school-age children with DS.
View Article and Find Full Text PDFQuant Imaging Med Surg
December 2024
Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.
Background: Radiation-induced brain injury (RBI) is a common complication in patients with nasopharyngeal carcinoma (NPC) who have undergone radiotherapy (RT), which is characterized by significant cognitive and psychological impairments. Although radiation-induced regional structural abnormalities have been well-reported, the effects of RT on the whole brain structural covariance networks are mostly unknown. Here, we performed a source-based morphometry (SBM) study to solve this issue.
View Article and Find Full Text PDFExtracell Vesicles Circ Nucl Acids
January 2024
Laboratory of Neurobiology, Príncipe Felipe Research Centre, Valencia 46012, Spain.
Cirrhotic patients can present hepatic encephalopathy (HE), showing motor and cognitive deficits. Hyperammonemia and peripheral inflammation are known to induce neuroinflammation and alter neurotransmission, which finally induces neurological impairment in HE. However, the mechanisms by which the deleterious effects of peripheral inflammation are transmitted to the brain are not well understood.
View Article and Find Full Text PDFBrain Struct Funct
December 2024
Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA.
Healthy aging is associated with deficits in cognitive performance and brain changes, including in the cerebellum. Cerebellar communication with the cortex via closed-loop circuits through the thalamus have been established and these circuits are closely related to the functional topography of the cerebellum. In this study, we sought to elucidate relationships between cerebellar structure and function with cognition in healthy aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!