The avocado cv. Hass is one of the most dynamic fruits in the world and is of particular significance in tropical areas, where climate variability phenomena have a high impact on productivity and sustainability. Nanotechnology-based tools could be an alternative to mitigate and/or adapt plants to these phenomena. Our approach was based on identifying changes in temperature and precipitation associated with climate variability in avocado areas in Colombia and proposing mitigation strategies based on the use of nanotechnology. This study had two objectives: (i) to identify variations in temperature and precipitation in avocado-producing areas in Colombia and (ii) to evaluate the effect of calcium phosphate nanoparticles (nano CP) as an alternative to reduce stress in avocados under simulate climatic variability condition. Climatic clusters were determined based on the spatial K-means method and with the climatic temporal series data (1981-2020), a time series analysis we carried out. Later changes in each cluster were simulated in growth chambers, evaluating physiological and developmental responses in avocado seedlings subjected to nanoCaP after adjusting the application form and dose. XRD diffraction shows that the calcium phosphate phases obtained by solution combustion correspond to a mixture of hydroxyapatite and witocklite nanoparticles with irregular morphologies and particle sizes of 100 nm. Three clusters explained ∼90% of the climate variation, with increases and decreases in temperature and precipitation in the range of 1-1.4 °C and 4.1-7.3% respectively. The best-fitted time series models were of stationary autoregressive integrated moving averages (SARIMA). The avocado seedlings had differential responses () depending on the clusters, with a decrease in physiological behavior and development between 10 and 35%. Additionally, the nanoCaP reduced the climatic stress () in a range between 10 and 22.5%. This study identified the negative effect of climate variability on avocado seedlings and how nanoCaP can mitigate these phenomena.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10412774 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e18658 | DOI Listing |
Bio Protoc
January 2025
Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
Primary neuronal culture and transient transfection offer a pair of crucial tools for neuroscience research, providing a controlled environment to study the behavior, function, and interactions of neurons in vitro. These cultures can be used to investigate fundamental aspects of neuronal development and plasticity, as well as disease mechanisms. There are numerous methods of transient transfection, such as electroporation, calcium phosphate precipitation, or cationic lipid transfection.
View Article and Find Full Text PDFCureus
December 2024
Orthopaedics and Traumatology, Unidade Local de Saúde de Viseu Dão-Lafões, Viseu, PRT.
Reverse Hill-Sachs lesions (RHSL) are common complications associated with posterior shoulder dislocations and represent a significant challenge for preserving joint stability and function. If untreated, these compression fractures of the anteromedial humeral head can compromise the integrity of the joint, predisposing patients to recurrent instability and arthropathy. While various treatment modalities exist, achieving an anatomic reduction of the defect while preserving the articular cartilage remains a desirable outcome, particularly in acute settings.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Orthodontic Department, Nanjing Stomatological Hospital, Affiliated hospital of Medical School, Institute of Stomatology, Nanjing University, No. 30 Zhongyang Road, Nanjing, Jiangsu, China.
BMC Biotechnol
January 2025
Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33314, USA.
Background: Tissue engineering for bone regeneration aims to heal severe bone injuries. This study aimed to prepare and assess the early osteogenic differentiation effects of a gelatin/calcium phosphate- Punica granatum nanocomposite scaffold on stem cells from human exfoliated deciduous (SHED) and human dental pulp stem cells (HDPSCs).
Methods: The electrospinning method was used to prepare a gelatin/calcium phosphate nanocomposite scaffold containing pomegranate (Punica granatum) extract.
Acta Bioeng Biomech
September 2024
Department of Biochemistry and Biotechnology, Medical University of Lublin, Lublin, Poland.
: The synthesis of fluoridated apatite consists of several stages, among which the heat treatment has a significant impact on the physical and chemical properties. The present study aims to elucidate the influence of two different sintering methods on fluoride-substituted apatite properties. : For this purpose, a two F-substituted apatites were produced by heat treatment in different ways called "rapid sintering" and "slow sintering".
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!