Sustainable management of non-edible agricultural residues of cashew nut production is a concern in Colombia. Therefore, this study aimed to study the fatty acid content of a pyrolytic liquid obtained from cashew nut shells (CNSs) from the Vichada region in Colombia. Transesterification of pyrolytic liquid was conducted to obtain biodiesel at the micro-scale as the first approach for this valorization route. Proximal analysis of samples was carried out using advanced analytical techniques (UHPLC-MS and CG-MS) whereas phenolic content and antioxidant activity were determined. The production yield of pyrolytic liquid was 69.15 ± 5.07% weight (wt.), at 550 °C and 2h of pyrolysis and the liquid was rich in fatty acids (∼70% wt.) and long-chain phenols (∼18% wt.). Among the phenolic compounds in liquid, mainly unsaturated C15:4 cardanol was identified (82.1 ± 5.5 mg/g), whereas the antioxidant activity of pyrolytic liquid was 0.714 ± 0.030 TE/g. Moreover, the biodiesel yield was 81% using catalyst sodium methoxide (12% v), and 50 °C and 26 min for the reaction. The obtained biodiesel in the hexane fraction was rich in methyl -8-octadecanoate (20.9 % wt.) and methyl palmitate (14.3 % wt.), being the representative compounds in the biodiesel. Therefore, the results indicated that thermal conversion of CNSs for obtaining biodiesel on a one-step process is a suitable strategy for the management of toxic and non-edible cashew residues. Finally, this is the first work of its kind that propose in detail the composition of pyrolytic liquid obtained from Colombian cashew nut residues under the proximate analysis approach and using advanced analytical techniques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10415661 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e18632 | DOI Listing |
Environ Res
January 2025
Heilongjiang Provincial Key Laboratory of CO(2) Resource Utilization and Energy Catalytic Materials, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China. Electronic address:
Achieving the harmless degradation of organic pollutants remains a challenging task for the advanced oxidation processes. Metal-organic frameworks have emerged in the field of energy and environmental catalysis. Herein, MIL-101(Fe) was employed as the precursor to prepare a porous carbon embedded Fe nanoparticles (Fe@C) via a pyrolytic process under N protection.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5. Electronic address:
The development of biofuel technologies depends on the accurate identification and quantification of products from the conversion processes. Given the complexity of the renewable resources, the availability of biomass, and the versatility of conversion methods, there is a need for characterization methods that provide rapid and reliable analysis for various products coming from different conversion processes with minimal sample preparation. This study develops and validates gas chromatography methods that use multiple detectors to analyze pyrolytic compounds in both gas and liquid phases efficiently in a single, rapid run.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt. Electronic address:
Background: The highly industrialized areas characterize the delta coasts of the world, due to the discharging of large quantity of wastewater into the river estuaries. The entrance of phenolic compounds and PAHs into the aquatic environment has not been sufficiently studied on the Egyptian Mediterranean coast. The article examines the content and ecological risks associated with 11 phenolic compounds and 14 PAHs in the bottom sediments of the Nile River estuaries, the largest river systems that discharged into the Mediterranean Sea.
View Article and Find Full Text PDFMolecules
November 2024
National Research and Development Institute for Cryogenic and Isotopic Technologies-ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania.
The paper manufacturing process produces liquid and gaseous alternative fuels, as well as solid wastes. These can be subsequently treated through chemical processing, oxidation, and thermal activation, resulting in adsorbent materials with CO adsorption capacities. The valorisation of black liquor waste resulting from paper manufacturing was achieved through a catalytic pyrolysis process using two catalysts previously prepared in house (Cu-Zn-MCM-41 and Ni-SBA-16).
View Article and Find Full Text PDFWaste Manag
December 2024
Petroleum and Energy from Biomass Research Group, Department of Chemistry, Federal University of Sergipe, São Cristóvão 49107-230, Sergipe, Brazil. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!