Background: Excessive body fat may be a major cause of insulin resistance and diabetes. But body weight reduction by energy restriction may simultaneously reduce both fat and muscle. Skeletal muscle is an important organ for glucose metabolism regulation, and loss of muscle may deteriorate glucose metabolism. Therefore, it is preferable to predominantly reduce fat without significant loss of muscle with weight loss in patients with type 2 diabetes. Previously, the anti-diabetic agent glucagon-like peptide-1 receptor agonists (GLP-1RAs) liraglutide and semaglutide given by injection were reported to decrease fat with less effect on muscle in diabetic patients. Recently oral semaglutide was developed and was reported to decrease body weight, but the effect on muscle has not been fully evaluated.
Methods: This was a non-interventional retrospective longitudinal study. We evaluated the effect of 24-week treatment with oral semaglutide on body fat and muscle mass in 25 Japanese patients with type 2 diabetes. Laboratory examination and body composition test by bioelectrical impedance analysis (BIA) were performed at baseline, 12 weeks, and 24 weeks, and the effects on glycemic control and body composition were assessed.
Results: Hemoglobin A1c significantly decreased at 12 weeks and further ameliorated at 24 weeks (8.7±0.87% at baseline; 7.6±1.00% at 12 weeks; 7.0±0.80% at 24 weeks; mean ± standard error (SE)). While body fat significantly decreased (28.3 ± 1.52 kg at baseline; 26.8 ± 1.59 kg at 12 weeks; 25.5 ± 1.57 kg at 24 weeks; mean ± SE), whole-body lean mass was not significantly changed (48.1 ± 1.92 kg at baseline; 47.7 ± 1.93 kg at 12 weeks; 47.6 ± 1.89 kg at 24 weeks; mean ± SE). Furthermore, the appendicular skeletal muscle index (SMI) defined as appendicular skeletal muscle mass (ASM)/height squared (units; kg/m) was also unchanged.
Conclusion: The 24-week treatment with oral semaglutide ameliorated glycemic control with reduction of body fat but not muscle mass in Japanese patients with type 2 diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416191 | PMC |
http://dx.doi.org/10.14740/jocmr4987 | DOI Listing |
Life Metab
December 2024
Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China.
Type 2 diabetes mellitus (T2DM) is closely associated with obesity, while interactions between the two diseases remain to be fully elucidated. To this point, we offer this perspective to introduce a set of new insights into the interpretation of T2DM spanning the etiology, pathogenesis, and treatment approaches. These include a definition of T2DM as an energy surplus-induced diabetes characterized by the gradual decline of β cell insulin secretion function, which ultimately aims to prevent the onset of severe obesity through mechanisms of weight loss.
View Article and Find Full Text PDFLife Metab
February 2025
Hubei Key Laboratory of Cell Homeostasis, Department of Biochemistry, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China.
Graphical Abstract Lipoprotein lipase (LPL) mediates peripheral tissue triglyceride (TG) uptake. Hepatic ANGPTL3 (A3) and ANGPTL8 (A8) form a complex and inhibit LPL activity in the white adipose tissue (WAT) via systematic circulation. ANGPTL4 (A4) is expressed in WAT and inhibits LPL activity locally.
View Article and Find Full Text PDFLife Metab
February 2025
Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China.
Abdominal aortic aneurysm (AAA) is strongly correlated with obesity, partially due to the abnormal expansion of abdominal perivascular adipose tissue (PVAT). Cell death-inducing DNA fragmentation factor-like effector C (CIDEC), also known as fat-specific protein 27 (FSP27) in rodents, is specifically expressed in adipose tissue where it mediates lipid droplet fusion and adipose tissue expansion. Whether and how CIDEC/FSP27 plays a role in AAA pathology remains elusive.
View Article and Find Full Text PDFLife Metab
December 2023
Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China.
Life Metab
December 2023
National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
Regardless of its anatomical site, adipose tissue shares a common energy-storage role but exhibits distinctive properties. Exploring the cellular and molecular heterogeneity of white adipose tissue (WAT) is crucial for comprehending its function and properties. However, existing single-nucleus RNA sequencing (snRNA-seq) studies of adipose tissue heterogeneity have examined only one or two depots.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!