Methyl 7,7'-dimethoxy-5'-(morpholinomethyl)-[4,4'-bibenzo[d][1,3] dioxole]-5-carboxylate methanesulfonate (IMM) is an innovative drug for the treatment of nonalcoholic fatty liver disease (NAFLD) owing to its high efficacy and low toxicity. In this study, five minor impurities (I, II, III, IV, and V) were identified and analyzed using spectroscopic evidence, chemical synthetic methods, and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The impurities included hydrolysates and oxidation by-products extracted from both the drug in its final formulation and during synthesis. Toxicity prediction revealed potential carcinogenicity of impurity V containing an N-oxygen fragment. A reliable and selective HPLC method for the quantitative analysis of impurities I-IV and a sensitive HPLC-MS/MS method for potential genotoxic impurity V were developed and optimized. The methods were validated based on the International Council for Harmonization guidelines. Satisfactory linearity was obtained for the analytes over the range of 0.1-2.0 g/mL for impurities I-IV and 0.3-30.0 ng/mL for impurity V, and in all cases, the fitting correlation coefficients exceeded 0.999. The obtained limits of detection values were 0.05 ng/mL and 0.005 g/mL for impurity V and impurities I-IV, respectively. The precision and repeatability of the methods were less than 1.08% and 8.72% for each impurity. The recovery percentages of all impurities were in the range of 91.18%-111.27%, with the relative standard deviation of less than 3.69%. The greenness assessment of the HPLC method and the HPLC-MS/MS method were evaluated by using AGREE software with a score value of 0.72 and 0.68, respectively. The recommended procedures that were accurate, specific, and ecofriendly were applied to the existing active pharmaceutical ingredients of IMM, and they generated satisfactory results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421711 | PMC |
http://dx.doi.org/10.1155/2023/3116223 | DOI Listing |
J Anal Methods Chem
August 2023
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
Methyl 7,7'-dimethoxy-5'-(morpholinomethyl)-[4,4'-bibenzo[d][1,3] dioxole]-5-carboxylate methanesulfonate (IMM) is an innovative drug for the treatment of nonalcoholic fatty liver disease (NAFLD) owing to its high efficacy and low toxicity. In this study, five minor impurities (I, II, III, IV, and V) were identified and analyzed using spectroscopic evidence, chemical synthetic methods, and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The impurities included hydrolysates and oxidation by-products extracted from both the drug in its final formulation and during synthesis.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
September 2019
Chinese Pharmacopeia Commission, Beijing, 100061, China.
Rationale: Eleven impurities and one polymerized impurity in mezlocillin were identified and their formation mechanisms were investigated in this study. The sources and reasons for the formation of impurities were revealed, which may guide industry to improve the manufacturing process and storage conditions and reduce the content of impurities in products. The results from this study also provided a scientific basis for the improvement of official monographs in pharmacopoeias.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2017
Microlabs Ltd., Chemical Research Department, API R&D Centre, Bommasandra-Jigani Link Road, KIADB INDL Area, Bommasandra, Bangalore, 560105 Karnataka, India. Electronic address:
Four impurities (Imp-I-IV) were detected using gradient HPLC method in few laboratory batches of acrivastine in the level of 0.03-0.12% and three impurities (Imp-I-III) were found to be known and one (Imp-IV) was unknown.
View Article and Find Full Text PDFJ Pharm Biomed Anal
February 2016
Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India. Electronic address:
In the present study, Azilsartan (AZL) was subjected to ICH recommended forced degradation conditions of hydrolysis, oxidation, dry heat and photolysis. The drug degraded to four degradation products (I-IV) under acidic, alkaline and water hydrolysis and photolysis. All the four degradation products were resolved in a single run on a C-18 column (250mm×4.
View Article and Find Full Text PDFJ Pharm Anal
June 2015
Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India.
Leflunomide (LLM) is subjected to forced degradation under conditions of hydrolysis, oxidation, dry heat, and photolysis as recommended by International Conference on Harmonization guideline Q1A(R2). In total, four degradation products (I-IV) were formed under different conditions. Products I, II and IV were formed in alkaline hydrolytic, acidic hydrolytic and alkaline photolytic conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!