Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We develop a machine learning framework that integrates high content/high throughput image analysis and artificial neural networks (ANNs) to model the separation between chemical compounds based on their estrogenic receptor activity. Natural and man-made chemicals have the potential to disrupt the endocrine system by interfering with hormone actions in people and wildlife. Although numerous studies have revealed new knowledge on the mechanism through which these compounds interfere with various hormone receptors, it is still a very challenging task to comprehensively evaluate the endocrine disrupting potential of all existing chemicals and their mixtures by pure or approaches. Machine learning offers a unique advantage in the rapid evaluation of chemical toxicity through learning the underlying patterns in the experimental biological activity data. Motivated by this, we train and test ANN classifiers for modeling the activity of estrogen receptor-α agonists and antagonists at the single-cell level by using high throughput/high content microscopy descriptors. Our framework preprocesses the experimental data by cleaning, scaling, and feature engineering where only the middle 50% of the values from each sample with detectable receptor-DNA binding is considered in the dataset. Principal component analysis is also used to minimize the effects of experimental noise in modeling where these projected features are used in classification model building. The results show that our ANN-based nonlinear data-driven framework classifies the benchmark agonist and antagonist chemicals with 98.41% accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413412 | PMC |
http://dx.doi.org/10.1016/b978-0-443-15274-0.50418-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!