Fabrication of water-dispersible and cell-stimulating calcium phosphate nanoparticles immobilizing basic fibroblast growth factor.

Colloids Surf B Biointerfaces

Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan. Electronic address:

Published: October 2023

AI Article Synopsis

  • bFGF is a therapeutic protein that boosts angiogenesis and tissue healing but is highly unstable, necessitating the use of delivery systems like nanoparticles for effective application.
  • Biocompatible calcium phosphate nanoparticles were created by integrating bFGF, heparin, and ferucarbotran, resulting in stable, dispersible particles with a size of approximately 200 nm and a negative zeta potential.
  • The nanoparticles facilitated the growth of certain cell types (baby hamster kidney and mouse osteoblastic cells) while inhibiting others (rat pheochromocytoma cells), indicating that the influence of the nanoparticles on cell growth varies based on both the dosage and the type of cell, highlighting the need for further research.

Article Abstract

Basic fibroblast growth factor (bFGF) is a therapeutic protein that can enhance angiogenesis, wound healing, and tissue regeneration; however, it is extremely unstable even under a normal physiological environment. Biocompatible calcium phosphate (CaP) nanoparticles (NPs) co-immobilizing bFGF, heparin, and ferucarbotran would be useful as a multifunctional delivery carrier of bFGF. In this study, such NPs were successfully fabricated by a coprecipitation process, using a labile supersaturated CaP solution containing bFGF, heparin, and ferucarbotran. The NPs showed relatively high negative zeta potential (-12 mV) because of the negatively charged heparin, which enabled their stable dispersion in water. The hydrodynamic diameter of the NPs was around 200 nm. Immunoreactive bFGF was released from the NPs in an acellular medium dose-dependently. The NPs promoted proliferation of baby hamster kidney fibroblasts (BHK-21 cells) and mouse osteoblastic MC3T3-E1 cells at a certain dose range, although they inhibited proliferation of rat pheochromocytoma (PC-12) cells. These results demonstrated that the effect of the NPs on cell proliferation was dependent on the cell type and dose, the details of which should be investigated in a future study.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2023.113502DOI Listing

Publication Analysis

Top Keywords

calcium phosphate
8
basic fibroblast
8
fibroblast growth
8
growth factor
8
bfgf heparin
8
heparin ferucarbotran
8
nps
7
bfgf
5
fabrication water-dispersible
4
water-dispersible cell-stimulating
4

Similar Publications

Background: Leishmaniasis represents a significant parasitic disease with global health implications, and the development of an affordable and effective vaccine could provide a valuable solution. This study aimed to evaluate the immunogenicity of a DNA vaccine targeting Leishmania major specifically based on the Leishmania-activated C kinase (LACK) antigen, utilizing calcium phosphate nanoparticles (CaPNs) and chitosan nanoparticles (ChitNs) as adjuvants.

Methods: Seventy female BALB/c mice, aged 4-6 wk and weighing 20-22 g, were selected and divided into five groups, each consisting of 14 mice.

View Article and Find Full Text PDF

Efficacy of sodium-glucose cotransporter 2 inhibitors for kidney stone prevention in nondiabetic patients is unknown. In a double-blind, placebo-controlled, single-center, crossover phase 2 trial, 53 adults (≥18 and <75 years) with calcium (n = 28) or uric acid (UA; n = 25) kidney stones (at least one previous kidney stone event) without diabetes (HbA1c < 6.5%, no diabetes treatment) were randomized to once daily empagliflozin 25 mg followed by placebo or reverse (2 weeks per treatment).

View Article and Find Full Text PDF

Structural insights into the mechanism of phosphate recognition and transport by XPR1.

Nat Commun

January 2025

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.

XPR1 is the sole protein known to transport inorganic phosphate (Pi) out of cells, a function conserved across species from yeast to mammals. Human XPR1 variants lead to cerebral calcium-phosphate deposition and primary familial brain calcification (PFBC), a hereditary neurodegenerative disorder. Here, we present the cryo-EM structure of human XPR1 in both its Pi-unbound and various Pi-bound states.

View Article and Find Full Text PDF

Remineralization is a common strategy for the repair of early demineralized tooth enamels, but the harsh dynamic oral environment often hampers its efficacy. Rapid remineralization is expected to address this challenge, however, the stabilizers of remineralization materials often resist their transformation required for repair. Here, by dissolving the ions of calcium and phosphate in glycerol-dominant solvents, we obtain the calcium phosphate clusters (1-2 nm), which are stabilized by glycerol (with high viscosity and affinity to clusters), but can perform a fast enamel repair via the water-triggered transformation in both static and dynamic environments.

View Article and Find Full Text PDF

: To explore the relationship between the stability of poly(gamma-glutamic acid) (γ-PGA) dispersion systems with γ-PGA of different molecular weights (MWs) and concentrations and type I collagen mineralization. : γ-PGA was used as a noncollagenous protein (NCP) analogue to regulate the stability of supersaturated γ-PGA-stabilized amorphous calcium phosphate (PGA-ACP) solutions by changing the γ-PGA MW (2, 10, 100, 200 and 500 kDa) and concentration (400, 500 and 600 μg mL). Then, the optical density (OD) at 72 h was measured to determine the PGA-ACP solution stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!