The base excision repair (BER) pathway repairs small, non-bulky DNA lesions, including oxidized, alkylated, and deaminated bases, and is responsible for the removal of at least 20,000 DNA lesions per cell per day. BER is initiated by DNA damage-specific DNA glycosylases that excise the damaged base and generates an abasic (AP) site or single-strand breaks, which are subsequently repaired in mammalian cells either by single-nucleotide (SN) or multiple-nucleotide incorporation via the SN-BER or long-patch BER (LP-BER) pathway, respectively. This chapter describes a plaque-based host cell reactivation (PL-HCR) assay system for measuring BER mechanisms in live mammalian cells using a plasmid-based assay. After transfection of a phagemid (M13mp18) containing a single modified base (representative BER DNA substrates) within a restriction site into human cells, restriction digestions detect the presence or absence (complete repair) of the adduct by the transformation of the digestion products into E. coli and counting the transformants as plaques. To monitor the patch size, different plasmids are constructed containing C:A mismatches within different restriction sites (inhibiting digestion) at various distances on both sides (5' or 3') of the modified base-containing restriction sites. Using this assay, the percentage of repair events that occur via 5' and 3' patch formation can be quantified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-3373-1_1 | DOI Listing |
PLoS One
December 2024
School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
Immunofluorescence is highly dependent on antibody-antigen interactions for accurate visualization of proteins and other biomolecules within cells. However, obtaining antibodies with high specificity and affinity for their target proteins can be challenging, especially for targets that are complex or naturally present at low levels. Therefore, we developed AptaFluorescence, a protocol that utilizes fluorescently labeled aptamers for in vitro biomolecule visualization.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
Drug resistance of cancers remains a major obstacle due to limited therapeutics. Lysosome targeting is an effective method for overcoming drug resistance in cancer cells. St-N (ent-13-hydroxy-15-kaurene-19-acid N-methylpiperazine ethyl ester) is a novel alkaline stevioside derivative with an amine group.
View Article and Find Full Text PDFPLoS Pathog
December 2024
Amsterdam UMC, location University of Amsterdam, Experimental Immunology, Amsterdam, The Netherlands.
The gastrointestinal tract is a prominent portal of entry for HIV-1 during sexual or perinatal transmission, as well as a major site of HIV-1 persistence and replication. Elucidation of underlying mechanisms of intestinal HIV-1 infection are thus needed for the advancement of HIV-1 curative therapies. Here, we present a human 2D intestinal immuno-organoid system to model HIV-1 disease that recapitulates tissue compartmentalization and epithelial-immune cellular interactions.
View Article and Find Full Text PDFPLoS One
December 2024
Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Zhejiang, Hangzhou, China.
Purpose: Approximately 20% of all breast cancer cases are classified as triple-negative breast cancer (TNBC), which represents the most challenging subtype due to its poor prognosis and high metastatic rate. Caffeic acid phenethyl ester (CAPE), the main component extracted from propolis, has been reported to exhibit anticancer activity across various tumor cell types. This study aimed to investigate the effects and mechanisms of CAPE on TNBC.
View Article and Find Full Text PDFPLoS One
December 2024
Servier, Research & Development, Gif-sur-Yvette, France.
Improving the selectivity and effectiveness of drugs represents a crucial issue for future therapeutic developments in immuno-oncology. Traditional bulk transcriptomics faces limitations in this context for the early phase of target discovery as resulting gene expression levels represent the average measure from multiple cell populations. Alternatively, single cell RNA sequencing can dive into unique cell populations transcriptome, facilitating the identification of specific targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!