Cellular organisms possess intricate mechano-adaptive systems that enable them to sense forces and process them with (bio)chemical circuits for functional adaptation. Inspired by such processes, this study introduces a hydrogel system capable of mechanically activated and chemically transduced self-destruction. Our judiciously designed hydrogels can mechanically generate radicals that are processed and amplified in a self-propagating radical de-crosslinking reaction, ultimately leading to mechanically triggered self-immolation. We put such systems to work in mechano-induced debonding, and in a bilayer actuator, where swelling-induced bending generates sufficient force for selective degradation of one layer, leading to autonomous self-regulation associated with unbending. Our work helps define design criteria for molecularly controlled adaptive and self-regulating materials with embodied mechano-chemical information processing, and showcases their potential for adhesives and soft robotics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202309236 | DOI Listing |
Angew Chem Int Ed Engl
October 2023
Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55218, Mainz, Germany.
Cellular organisms possess intricate mechano-adaptive systems that enable them to sense forces and process them with (bio)chemical circuits for functional adaptation. Inspired by such processes, this study introduces a hydrogel system capable of mechanically activated and chemically transduced self-destruction. Our judiciously designed hydrogels can mechanically generate radicals that are processed and amplified in a self-propagating radical de-crosslinking reaction, ultimately leading to mechanically triggered self-immolation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!