Hypothesis: To understand the relationship between topography and wetting, it is not enough to study the contact angle. Indeed, the liquid-solid interface plays an important role in wetting. However, data such as the total triple line length, the wetting area and the anchoring depth are inaccessible or difficult to obtain experimentally. This work proposes to overcome the experimental limitations by using a numerical approach to characterize the wetting behavior on textured surfaces.
Methods: The wetting behavior of an anisotropic textured surface was compared for both experimental and numerical approaches. The experimental wetting is characterized by sessile drop experiments. The simulations were performed by applying the pseudo-potential Lattice-Boltzmann method. The numerical approach was then used to predict the wetting behavior of different materials.
Findings: The simulations capture both the wetting state and the contact angle, in accordance with the experimental observation. Without making any assumptions about the interfacial shape and anchoring, the simulation allows to characterize the liquid-solid interface by quantifying the total length of the triple line and the wetting area. Simultaneously, the simulations enable the characterization of impregnation within textures for complex mixed regimes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.07.207 | DOI Listing |
Adv Sci (Weinh)
January 2025
College of Materials Science and Engineering, National and Local Joint Engineering Research Center for Green Processing, Technology of Agricultural and Forestry Biomass, Central South University of Forestry and Technology, Changsha, 410004, China.
The directional migration of S-vacancy is beneficial to the separation of photogenerated carriers and the transition of electrons in semiconductors. In this study, Bi/BiS@carboxylic-cellulose (CC) photocatalyst with bionic chloroplast structure is obtained by electron beam irradiation to induce S-vacancy in BiS@CC. The results of CO photoreduction experiments demonstrate that the reduction rate of CO to CHOH by Bi/BiS@CC-450 samples is 10.
View Article and Find Full Text PDFSmall
January 2025
Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China.
The propensity of zinc (Zn) to form irregular electrodeposits at liquid-solid interfaces emerges as a fundamental barrier to high-energy, rechargeable batteries that use zinc anodes. So far, tremendous efforts are devoted to tailoring interfaces, while atomic-scale reaction mechanisms and the related nanoscale strain at the electrochemical interface receive less attention. Here, the underlying atomic-scale reaction mechanisms and the associated nanoscale strain at the electrochemical alloy interface are investigate, using gold-zinc alloy protective layer as a model system.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Zhejiang Key Laboratory of Clean Energy Conversion and Utilization, Science and Education Integration College of Energy and Carbon Neutralization, Zhejiang University of Technology, Hangzhou 310014, China.
3D Print Addit Manuf
October 2024
Department of Aircraft Manufacturing Engineering, School of Aerospace Engineering, Guizhou Institute of Technology, Guiyang, China.
The application of a pulsed magnetic field (PMF) during a metallurgy solidification process has proven to be an effective method in refining the grain size and improving the mechanical performance of the material. However, fewer works were reported in the realm of laser additive manufacturing (LAM) and the mechanism of grain refinement consequent to the PMF is still unclear. In this work, numerical models were developed to study the thermal-fluid characteristics in the Ti-alloy melt pool generated during the laser scanning process under the effect of a combined direct current (DC) electric field and PMF.
View Article and Find Full Text PDFSci Rep
December 2024
Faculté des Sciences et Technologies, LEMTA - Université de Lorraine - CNRS UMR 7563, Boîte Postale 70239, Vandoeuvre les Nancy cedex, 54506, France.
The wetting characteristics of fluids play a crucial role in various fields of interface and surface science. Contact angle serves as a fundamental indicator of wetting behavior. However, accurate quantification of wetting phenomena even at the macroscale often poses challenges, particularly due to the hysteresis between receding and advancing contact angles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!