Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Meningiomas are common intracranial tumors. Machine learning (ML) algorithms are emerging to improve accuracy in 4 primary domains: classification, grading, outcome prediction, and segmentation. Such algorithms include both traditional approaches that rely on hand-crafted features and deep learning (DL) techniques that utilize automatic feature extraction. The aim of this study was to evaluate the performance of published traditional ML versus DL algorithms in classification, grading, outcome prediction, and segmentation of meningiomas.
Methods: A systematic review and meta-analysis were conducted. Major databases were searched through September 2021 for publications evaluating traditional ML versus DL models on meningioma management. Performance measures including pooled sensitivity, specificity, F1-score, area under the receiver-operating characteristic curve, positive and negative likelihood ratios (LR+, LR-) along with their respective 95% confidence intervals (95% CIs) were derived using random-effects models.
Results: Five hundred thirty-four records were screened, and 43 articles were included, regarding classification (3 articles), grading (29), outcome prediction (7), and segmentation (6) of meningiomas. Of the 29 studies that reported on grading, 10 could be meta-analyzed with 2 DL models (sensitivity 0.89, 95% CI: 0.74-0.96; specificity 0.91, 95% CI: 0.45-0.99; LR+ 10.1, 95% CI: 1.33-137; LR- 0.12, 95% CI: 0.04-0.59) and 8 traditional ML (sensitivity 0.74, 95% CI: 0.62-0.83; specificity 0.93, 95% CI: 0.79-0.98; LR+ 10.5, 95% CI: 2.91-39.5; and LR- 0.28, 95% CI: 0.17-0.49). The insufficient performance metrics reported precluded further statistical analysis of other performance metrics.
Conclusions: ML on meningiomas is mostly carried out with traditional methods. For meningioma grading, traditional ML methods generally had a higher LR+, while DL models a lower LR-.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wneu.2023.08.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!