Microfibers released from textile materials are receiving greater attention due to their severe adverse effects on the environment. Although mitigation strategies have been developed for laundering, researchers uphold that it is crucial to start mitigating at the source. In that aspect, this research aims to analyze the cutting and sewing methods of knitted fabrics and their impact on the microfiber release of garments during laundry. The results of the study have confirmed that cutting and sewing methods have a significant impact on the microfiber release of a garment. The analysis of different cutting methods showed that laser and ultrasonic cutting methods reduce the microfiber release up to 20 times compared to the conventional scissor-cut edges. While comparing the different stitch types, the overlock stitch type showed reduced shedding than the other stitch types (flatlock stitch and single needle lockstitch). Our results also showed that the use of more needles increases the microfiber emission among different stitch variations of the same stitch type. For instance, a 45.27 % increase in microfiber emission was reported with the 4-thread overlock stitch (2 needles) than with the 3-thread stitch (1 needle). Regarding seam type, the proposed edge finishing seam (EFb) was effective in reducing 93 % of microfiber release as the edges are completely covered. When the effect of stitch density is considered, in the case of single needle lockstitch and flatlock stitch, the microfiber release is reduced with increased stitch density. However, a different trend was noted in the overlock stitch, which needed detailed exploration in the future. The results confirmed that a proper selection of stitch, stitch density, and seam type would reduce the microfiber release from a garment by up to 64.6 %.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.166247 | DOI Listing |
Expert Opin Drug Deliv
January 2025
Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Moscow, Russia.
Introduction: The pursuit of linear dosage in pharmacy is essential for achieving consistent therapeutic release and enhancing patient compliance. This review provides a comprehensive summary of zero-order drug delivery systems, with a particular focus on reservoir-based systems emanated from different microfabrication technologies.
Areas Covered: The consideration of recent advances in drug delivery systems is given to encompass the key areas including the importance of achieving a constant drug release rate for therapeutic applications.
Sci Rep
January 2025
Research Center of Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
Cigarette filter microplastics are composed of cellulose acetate that does not undergo biological or photo-degradation. These microplastics are readily dispersed and can be found abundantly in water, soil, and air. These fibers possess high absorption capabilities, allowing them to collect and retain pollutants such as toxic elements.
View Article and Find Full Text PDFJ Ind Ecol
December 2024
Group for Sustainability and Technology ETH Zurich Zurich Switzerland.
To fight plastic pollution and reach net-zero ambitions, policy and industry set goals to increase the recycling of plastics and the recycled content in products. While this ideally reduces demand for virgin material, it also increases pressure on recyclers to find suitable endmarkets for the recyclate. This may lead to two effects: a multiplication of recycled content in applications already made of plastic and a substitution of non-plastic materials with cheap, low-quality recyclate.
View Article and Find Full Text PDFiScience
December 2024
School of Chemistry and Chemical Engineering, University of Surrey, GU2 7XH Guildford, UK.
Microplastics fibers shed from washing synthetic textiles are released directly into the waters and make up 35% of primary microplastics discharged to the aquatic environment. While filtration devices and regulations are in development, safe disposal methods remain absent. Herein, we investigate catalytic hydrothermal carbonization (HTC) as a means of integrating this waste (0.
View Article and Find Full Text PDFFood Res Int
November 2024
Nutrition and Food Service Research Center, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136 CEP 11015-02, Santos, São Paulo, Brazil. Electronic address:
The design and development of nanoparticle- and microparticle-based delivery systems incorporating carotenoids into carrier materials offers multiple advantages, including enhancing the bio-efficacy of these compounds due to improving their bioaccessibility and bioavailability. This study introduced pitanga saponified carotenoid extract (PSCE) and pitanga non-saponified carotenoid extract (PSCE) in a 12 % zein/1 %PEO solution and electrospun for fiber production. Then, the fibers were characterized, and their bioaccessibility and bioavailability were also evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!