Ethnopharmacological Relevance: Sanguisorba officinalis L. (S. officinalis L.), known as Di Yu (DY) in Traditional Chinese Medicine (TCM), are used to treat burns, vomiting of blood, asthma, intestinal infections, and dermatitis. It has been reported that the root of DY has a significant inhibitory effect on Helicobacter pylori (H. pylori). However, there is currently little research on the composition analysis and anti-H. pylori infection properties of the non-medicinal parts of DY, such as its stems, leaves, and flowers.
Aim Of Study: The commonly used eradication therapies for H. pylori infection are antibiotic-based therapies. With the increasing antibiotic resistance of H. pylori, it is urgent to find effective alternative therapies. To find alternative therapies and increase the utilization of DY, this study aims to investigate the phytochemistry profile, in vitro anti-H. pylori activity, and preliminary antibacterial mechanism of the non-medicinal parts of DY.
Materials And Methods: The non-medicinal parts of DY extracts were obtained by using hot water reflux method. The chemical composition of these extracts was analyzed using colorimetric method, high-performance liquid chromatography (HPLC), and ultra-high-performance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS). The in vitro anti-H. pylori activity was investigated using broth microdilution method, checkerboard dilution method, time-kill curve, time-inhibition curve, scanning electron microscopy, and transmission electron microscopy. Transcriptional sequencing technology was used to study the effect of DY stems and flowers on the gene expression of H. pylori and explore possible antibacterial mechanisms.
Results: The non-medicinal parts of DY contain abundant phytochemicals, such as total phenols and total flavonoids, and possess strong inhibitory and bactericidal activity against both standard and clinical strains of H. pylori in vitro. The MIC was 80-1280 μg/mL and the MBC was 80-2560 μg/mL, and the strength of the antibacterial effects was dependent on the concentration of phytochemicals (total polyphenols, gallic acid and ellagic acid). In addition, the combination of non-medicinal parts of DY with antibiotics, such as amoxicillin, metronidazole, levofloxacin, and clarithromycin, did not result in any antagonistic effects. All of them could disrupt the morphology, internal microscopic and cell wall structures of H. pylori thereby acting as an inhibitor. The mechanism of action was found to be the disruption of H. pylori morphology, internal microstructure, and cell wall. Transcriptomic analysis showed that the non-medicinal parts of DY significantly regulated the gene expression of H. pylori, especially the metabolic pathway.
Conclusions: This study analyzed the chemical composition of the non-medicinal parts of DY and confirmed its inhibitory and bactericidal activities against H. pylori, both standard and clinical strains. Additional, the mechanism of inhibition involves disrupting the structure of H. pylori cells, altering gene expression, and interfering with bacterial metabolic pathways. This study provides a reference for further resource utilization and the development of H. pylori drugs using the non-medicinal parts of DY.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2023.116981 | DOI Listing |
Drug Alcohol Rev
January 2025
Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, Australia.
Introduction: In January 2020, the government of the Australian Capital Territory (ACT) decriminalised the possession and cultivation of cannabis for personal use. This study explored the driving-related attitudes, beliefs and behaviours of ACT residents who are legally cultivating and consuming cannabis.
Methods: A two-part cross-sectional study was conducted.
Antioxidants (Basel)
December 2024
Hainan Key Laboratory of Research and Development of Natural Product from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
Miq. is an important undergrowth species in southern China. The fruits of are recognized as one of "the four famous south medicines" and are also used in the production of preserved fruit.
View Article and Find Full Text PDFHeliyon
December 2024
CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024, Lisboa, Portugal.
L.-based food supplement products in pharmacies and para pharmacies in Portugal increased by 84 % between 2021 and 2022, arousing consumers' curiosity. However, information about these products is limited, and consumers are not aware of the restrictions in current European regulations.
View Article and Find Full Text PDFPhytomedicine
November 2024
College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118 China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China. Electronic address:
Ultrason Sonochem
November 2024
Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!