Bamboo hemicellulose (HC) is a natural plant polysaccharide with good biocompatibility and biodegradability. But its poor antibacterial activity limits its application in fruits preservation. In this study, based on the good inducer of salicylic acid (SA) for plant diseases resistance, a novel antibacterial coating material was synthesized by grafting SA onto HC. The study aimed to investigate the synergistic effect of HC-g-SA on antibacterial ability, induces diseases resistance and microbial community composition of postharvest fruit. The graft copolymer treatment significantly reduced the incidence of gray mold caused by Botrytis cinerea in blueberries during storage (P < 0.05), and significantly stimulated the activity of key enzymes, including phenylalanine ammonia-lyase, chalcone isomerase, laccase, and polyphenol oxidase, leading to an increase in fungicidal compounds such as flavonoids, lignin, and total phenolics produced by the phenylpropanoid pathway in blueberries (P < 0.05). Moreover, the HC-g-SA coating altered bacterial and fungal community composition such that the abundance of postharvest fruit-peel pathogens was significantly reduced. After 8 days storage, the blueberry fruits treated by HC-g-SA had a weight loss rate of 12.42 ± 0.85 %. Therefore, the HC-g-SA graft copolymer had a positive impact on the control of gray mold in blueberry fruit during postharvest storage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.126303 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!