Intermediate products such as oxygenated compounds may interfere with bioconversion kinetics of lignocellulosic biomass into bioethanol. This work presents a multidimensional approach, based on liquid chromatography (LC), trapped ion mobility spectrometry (TIMS), tandem high-resolution mass spectrometry (HRMS/MS), and multivariate analysis, for the identification of enzymatic reactivity descriptors in 22 industrial biomass samples, called hydrolysates. The first part of the study is dedicated to the improvement of the chemical diversity assessment of the hydrolysates through an original three-dimensional Van Krevelen diagram displaying the double bond equivalent (DBE) as third dimension. In a second part, the evaluation of data by multivariate data analysis allowed the discrimination of sample according to the biomass type and the level of enzymatic reactivity. In the last part, a potential descriptor of low enzymatic reactivity was selected and used in a case study. An in-depth structural analysis was performed on the feature annotated as carbohydrate derivative. Considering the intricate fragmentation spectrum exhibited by the selected feature, trapped ion mobility was employed to enhance separation prior to the HRMS/MS experiments. This final step improved data interpretation and increased the identification confidence level leading to the characterization of xylotriose, 3,5-dimethoxy-4-hydroxybenzaldehyde and 4-hydroxy-3-methoxy-cinnamaldehyde. This is the first study to present an untargeted multidimensional approach for the identification of enzymatic hydrolysis inhibitors in industrial hydrolysate samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2023.464277DOI Listing

Publication Analysis

Top Keywords

enzymatic reactivity
16
trapped ion
12
ion mobility
12
liquid chromatography
8
chromatography trapped
8
tandem high-resolution
8
high-resolution mass
8
mass spectrometry
8
multivariate analysis
8
reactivity descriptors
8

Similar Publications

Selenium nanoparticles are well known for their antioxidant and stress-mitigating properties. In our study, composite nanoformulations of selenium and chitosan have been synthesized. The synthesized composite nanoformulations were 50 nm in diameter, spherical in shape, and had higher antioxidant activities and stability than the selenium and chitosan nanoparticles.

View Article and Find Full Text PDF

A single-component flavin-dependent halogenase, AetF, has emerged as an attractive biocatalyst for catalyzing halogenation. However, its flavin chemistry remains unexplored and cannot be predicted due to its uniqueness in sequence and structure compared to other flavin-dependent monooxygenases. Here, we investigated the flavin reactions of AetF using transient kinetics.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are an emerging strategy in cancer therapy, enhancing precision and efficacy by linking targeted antibodies to potent cytotoxic agents. This study introduces a novel ADC that combines ribonuclease A (RNase A) with cetuximab (Cet), an anti-EGFR monoclonal antibody, through a polyethylene glycol (PEG) linker (RN-PEG-Cet), aimed to induce apoptosis in KRAS mutant colorectal cancer (CRC) via a ROS-mediated pathway. RN-PEG-Cet was successfully synthesized and characterized for its physicochemical properties, retaining full enzymatic activity in RNA degradation and high binding affinity to EGFR.

View Article and Find Full Text PDF

SIRT5 desuccinylating IDH2 to alleviate oxidative stress in bovine mammary epithelial cells induced by ammonia.

Int J Biol Macromol

January 2025

Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China; Key Laboratory of Veterinary Biotechnology of Henan Province, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China. Electronic address:

Ammonia can cause cells to produce a large amount of reactive oxygen species (ROS), leading to the oxidative stress of cells. As the main intracellular reductant, nicotinamide adenine dinucleotide phosphate (NADPH) plays a crucial role in maintaining reduced glutathione (GSH), helping to remove ROS and protect cells from oxidative damage. Our study demonstrated that SIRT5 desuccinylated isocitrate dehydrogenase 2 (IDH2) to enhance its activity, resulting in increased NADPH production.

View Article and Find Full Text PDF

Cezanne-2 (Cez2) is a deubiquitinylating (DUB) enzyme involved in the regulation of ubiquitin-driven cellular signaling and selectively targets Lys11-linked polyubiquitin chains. As a representative member of the ovarian tumor (OTU) subfamily DUBs, it performs cysteine proteolytic isopeptide bond cleavage; however, its exact catalytic mechanism is not yet resolved. In this work, we used different computational approaches to get molecular insights into the Cezanne-2 catalytic mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!