Einstein's theory of general relativity predicts that a clock at a higher gravitational potential will tick faster than an otherwise identical clock at a lower potential, an effect known as the gravitational redshift. Here we perform a laboratory-based, blinded test of the gravitational redshift using differential clock comparisons within an evenly spaced array of 5 atomic ensembles spanning a height difference of 1 cm. We measure a fractional frequency gradient of [ - 12.4 ± 0. 7 ± 2. 5] × 10/cm, consistent with the expected redshift gradient of - 10.9 × 10/cm. Our results can also be viewed as relativistic gravitational potential difference measurements with sensitivity to mm scale changes in height on the surface of the Earth. These results highlight the potential of local-oscillator-independent differential clock comparisons for emerging applications of optical atomic clocks including geodesy, searches for new physics, gravitational wave detection, and explorations of the interplay between quantum mechanics and gravity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423269 | PMC |
http://dx.doi.org/10.1038/s41467-023-40629-8 | DOI Listing |
Phys Rev Lett
December 2024
Department of Astronomy, Cornell University, Ithaca, New York 14853, USA.
We present a new perturbative full-shape analysis of BOSS galaxy clustering data, including the full combination of the galaxy power spectrum and bispectrum multipoles, baryon acoustic oscillations, and cross-correlations with the gravitational lensing of cosmic microwave background measured from Planck. Assuming the ΛCDM model, we constrain the matter density fraction Ω_{m}=0.3138±0.
View Article and Find Full Text PDFNat Astron
August 2024
Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Zurich, Switzerland.
The most massive black holes in our Universe form binaries at the centre of merging galaxies. The recent evidence for a gravitational-wave (GW) background from pulsar timing may constitute the first observation that these supermassive black-hole binaries (SMBHBs) merge. Yet, the most massive SMBHBs are out of reach of interferometric GW detectors and are exceedingly difficult to resolve individually with pulsar timing.
View Article and Find Full Text PDFOpen Res Eur
June 2024
Institute of Theoretical Astrophysics, University of Oslo, Oslo, N-0315, Norway.
During the most active period of star formation in galaxies, which occurs in the redshift range 1 3, strong bursts of star formation result in significant quantities of dust, which obscures new stars being formed as their UV/optical light is absorbed and then re-emitted in the infrared, which redshifts into the mm/sub-mm bands for these early times. To get a complete picture of the high- galaxy population, we need to survey a large patch of the sky in the sub-mm with sufficient angular resolution to resolve all galaxies, but we also need the depth to fully sample their cosmic evolution, and therefore obtain their redshifts using direct mm spectroscopy with a very wide frequency coverage. This requires a large single-dish sub-mm telescope with fast mapping speeds at high sensitivity and angular resolution, a large bandwidth with good spectral resolution and multiplex spectroscopic capabilities.
View Article and Find Full Text PDFPhys Rev Lett
September 2024
Department of Physics and Astronomy, University of the Western Cape, Cape Town 7535, South Africa.
Recent measurements of the four-point correlation function in large-scale galaxy surveys have found apparent evidence of parity violation in the distribution of galaxies. This cannot happen via dynamical gravitational effects in general relativity. If such a violation arose from physics in the early Universe it could indicate important new physics beyond the standard model, and would be at odds with most models of inflation.
View Article and Find Full Text PDFStud Hist Philos Sci
December 2024
Faculty of Philosophy, University of Oxford, UK. Electronic address:
Gravitational redshift effects undoubtedly exist; moreover, the experimental setups which confirm the existence of these effects-the most famous of which being the Pound-Rebka experiment-are extremely well-known. Nonetheless-and perhaps surprisingly-there remains a great deal of confusion in the literature regarding what these experiments really establish. Our goal in the present article is to clarify these issues, in three concrete ways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!