Sensitive and specific detection of African swine fever virus (ASFV) is crucial for agricultural production and economic development due to the mortality and infectivity. In this study, a bismuth induced enhanced photoelectrochemical (PEC) biosensor based on in-situ loop mediated isothermal amplification (LAMP) was constructed using deposited bismuth nanoparticles loaded bismuth oxycarbonate (Bi/(BiO)CO) as photoactive material, using primers designed according to LAMP as recognition elements, and using in-situ LAMP to achieve nucleic acid amplification of target genes. As the Bi induced surface plasmon resonance (SPR) effect, enhanced light captures and effective electron hole separation, it could effectively enhance the photoelectric activity, so the prepared Bi/(BiO)CO nanohybrid had higher photocurrent intensity and good stability. The constructed PEC biosensor has realized the detection of ASFV in real samples with good sensitivity, specificity and repeatability. In the range from 1.0 × 10 to 1.0 × 10 g/L, the photoelectric current decreased with the increase of the concentration of ASFV, and the detection limit was 3.0 × 10 g/L (about 0.048 copies/μL). Combining the advantages of LAMP with the excellent performance of PEC, it provides a simple, economical and efficient method for nucleic acid diagnosis, and also provides a new idea for biosensor detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2023.341637 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!