Lateral flow DNA biosensor for visual detection of nucleic acid with triple-helix DNA functionalized carbon nanotube.

Anal Chim Acta

School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong, 276005, China. Electronic address:

Published: October 2023

We describe a novel lateral flow DNA biosensor (LFDB) based on carbon nanotube (CNT) and triple helix DNA (THD). The carboxylated CNT was first conjugated with amine-modified auxiliary single-stranded DNA probe (P) by dehydration reaction and used as signal probe. A main DNA probe (P) was introduced to react with the P and formed the THD on the CNT surface. Because of the large spatial effect, P was in an inactive state and cannot hybridize with the capture DNA probe (P) fixed on the LFDB test area. When the target DNA was present, P in the triple helix DNA hybridized with the target DNA due to the stronger base action, and the decomposition of the triple helix structure exposed P. Therefore, P on CNT surface was activated to hybridize with P. The CNT along with P was thus captured at the test area and accumulated to show a black line, which can be observed by naked eye for qualitative analysis and recorded with a portable grayscale reader for quantitative analysis. Single-stranded DNA was used as a target to prove the feasibility of the model. Under the best experimental conditions, the THD-CNT based LFDB was able to detect the lowest DNA concentration of 15 pM, which is 2.67 times better than that of the traditional duplex CNT-based LFDB. It should be noted that the LFDB based on THD functionalized CNT can differentiate between one-base-mismatched DNA and the complementary target DNA, can detected target DNA in 10% human serum, and can be employed as a versatile platform to detect various target (proteins, small molecular) by changing the sequence of P. This biosensor platform has enormous potential in the point-of-care detection of a rich diversity of analytes for clinical diagnosis and biomedical research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2023.341604DOI Listing

Publication Analysis

Top Keywords

target dna
16
dna
15
triple helix
12
dna probe
12
lateral flow
8
flow dna
8
dna biosensor
8
carbon nanotube
8
lfdb based
8
helix dna
8

Similar Publications

Precise imaging of noncoding RNAs (ncRNAs) in specific organelles allows decoding of their functions at subcellular level but lacks advanced tools. Here we present a DNA-based nanobiotechnology for spatially selective imaging of ncRNA (e.g.

View Article and Find Full Text PDF

Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications.

ACS Biomater Sci Eng

January 2025

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.

The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.

View Article and Find Full Text PDF

Background: Race/ethnicity may affect outcomes in metastatic breast cancer (MBC) due to biological and social determinants. We evaluated the impact of race/ethnicity on clinical, socioeconomic, and genomic characteristics, clinical trial participation, and receipt of genotype-matched therapy among patients with MBC.

Methods: A retrospective study of patients with MBC who underwent cell-free DNA testing (cfDNA, Guardant360â, 74 gene panel) between 11/2016 and 11/2020 was conducted.

View Article and Find Full Text PDF

Due to the emergence of drug resistance, androgen receptor (AR)-targeted drugs still pose great challenges in the treatment of prostate cancer, and it is urgent to explore an innovative therapeutic strategy. MK-1775, a highly selective WEE1 inhibitor, is shown to have favorable therapeutic benefits in several solid tumor models. Recent evidence suggests that the combination of MK-1775 with DNA-damaging agents could lead to enhanced antitumor efficacy.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!