Destruction of the blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) is an important factor promoting the progression of the injury. This study addressed how to repair the BSCB in order to promote the repair of injured spinal cords. Iguratimod (IGU), an anti-rheumatic drug, has been approved for clinical use. A spinal cord injury mouse model and TNF-α-stimulated bEnd.3 cells were used to investigate the effect and mechanism of IGU on injured BSCB. An intracerebroventricular osmotic pump was used to administer drugs to the SCI mouse model. The results showed that the SCI mice in the treatment group had better recovery of neurological function than the control group. Examination of the tissue revealed better repair of the BSCB in injured spinal cords after medication. According to the results from the cell model, IGU promoted the expression of tight junction proteins and reduced cell permeability. Further research found that IGU repaired the barrier function by regulating glycolysis levels in the injured endothelial cells. In studying the mechanism, IGU was found to regulate HIF-1α expression through the NF-κB pathway, thereby regulating the expression of the glycolytic enzymes related to endothelial injury. In summary, IGU promoted functional recovery in vivo by repairing the BSCB. In vitro, IGU regulated the level of glycolysis in the damaged endothelium through the NF-κB pathway, thereby repairing the tight junctions between the endothelium. Therefore, IGU may become a potential drug for treating spinal cord injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2023.114503DOI Listing

Publication Analysis

Top Keywords

spinal cord
12
cord injury
12
functional recovery
8
tight junctions
8
repair bscb
8
injured spinal
8
spinal cords
8
igu
8
mouse model
8
mechanism igu
8

Similar Publications

Evaluation of transcriptomic changes after photobiomodulation in spinal cord injury.

Sci Rep

January 2025

Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined.

View Article and Find Full Text PDF

Microstructural white matter injury contributes to cognitive decline: Besides amyloid and tau.

J Prev Alzheimers Dis

February 2025

Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China. Electronic address:

Background: Cognitive decline and the progression to Alzheimer's disease (AD) are traditionally associated with amyloid-beta (Aβ) and tau pathologies. This study aims to evaluate the relationships between microstructural white matter injury, cognitive decline and AD core biomarkers.

Methods: We conducted a longitudinal study of 566 participants using peak width of skeletonized mean diffusivity (PSMD) to quantify microstructural white matter injury.

View Article and Find Full Text PDF

Background: The associations of early-onset coronary heart disease (CHD) and genetic susceptibility with incident dementia and brain white matter hyperintensity (WMH) remain unclear. Elucidation of this problem could promote understanding of the neurocognitive impact of early-onset CHD and provide suggestions for the prevention of dementia.

Objectives: This study aimed to investigate whether observed and genetically predicted early-onset CHD were related to subsequent dementia and WMH volume.

View Article and Find Full Text PDF

Background: Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD.

View Article and Find Full Text PDF

Objectives: The population in the U.S., and across the world is aging rapidly which warrants an assessment of the safety of surgical approaches in elderly individuals to better risk stratify and inform surgeons' decision making for optimal patient care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!