Tyre granulate used as infill for artificial turf is hailed by some as a good example of reuse, while others see it as a baleful means to dispose of discarded tyres. Because the particles are applied loosely to the surface, they will inevitably disperse into the environment. The possible environmental and health impacts of the particles are a source of societal concern. In response to this, policies to limit particle losses are being developed at the European level. To make informed decisions, data on the quantity of tyre granulate released into the environment are required. So far, however, there are no systematic reviews on or estimates of these losses. The aim of the present study was to identify the various pathways through which infill leaves a football turf and, subsequently, to estimate the quantity of infill leaving the turf by each of these pathways. Data on the pathways including the associated volumes were collected in a systematic literature review following the PRISMA method. The quality of the evidence reported in the retrieved literature was assessed using the GRADE method. The resulting pathways and corresponding quantities were captured in a mass balance. This study estimates that, without mitigation measures, approximately 950 kg/year (min. 570 kg/year, max. 2280 kg/year) of infill leaves the surface of an average artificial football turf via known pathways. Clearing snow can result in an additional loss of 830 kg/year (min. 200 kg/year, max. 2760 kg/year) of infill material. To mitigate the dispersion of infill, one could focus on snow removal, brushing and granulate picked up by players. Mitigation measures for these pathways are well-established and relatively easy to implement and maintain. Although the amount of granulate picked up from the turf by players is relatively small, the measure will promote environmental awareness among the players.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.166221 | DOI Listing |
Polymers (Basel)
November 2024
School of Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
A composite material comprising expanded polystyrene (EPS), granulated tyre rubber (GTR), and a compatibilizer is demonstrated as a possible replacement for fine and coarse agglomerates in mortar and concrete systems, respectively. Two different polymer blending processes (solvent/low shear blending and melt/high shear blending) are used, and the resulting composite material utilized as aggregate to replace sand and cement for mortar and concrete block development. Critical properties such as workability, compressive and flexural strengths, water absorption, bulk density, and porosity are measured before and after aggregate replacement.
View Article and Find Full Text PDFHeliyon
September 2023
Department of Environmental Protection and Water Engineering, Faculty of Environmental Engineering, Vilnius Gediminas Technical University, 10223, Vilnius, Lithuania.
The secondary use of tyre rubber is a potentially sustainable environmental solution. However, the sorption properties of used-tyre rubber have not yet been fully investigated. In this study, the rubber type (vulcanised or devulcanised part-worn tyre rubber) that can sorb phosphate phosphorus from aqueous solutions or wastewater more effectively is determined.
View Article and Find Full Text PDFSci Total Environ
December 2023
Department of Environmental Sciences, Faculty of Science, Open Universiteit, 6419 AT, Heerlen, the Netherlands.
Tyre granulate used as infill for artificial turf is hailed by some as a good example of reuse, while others see it as a baleful means to dispose of discarded tyres. Because the particles are applied loosely to the surface, they will inevitably disperse into the environment. The possible environmental and health impacts of the particles are a source of societal concern.
View Article and Find Full Text PDFSci Total Environ
June 2022
Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40131 Bologna, Italy.
The present study aimed to, for the first time, quantify the total content of 16 priority EPA PAHs in end-of-life tyre derived crumb rubber granulates and various manufactured rubberised asphalt mix designs. After identifying the availability of 16 EPA PAHs, the leaching behaviour of rubberised asphalt specimens, were evaluated using the Dynamic Surface Leaching Test (DSLT) based on CEN/TS 16637-2:2014 standard. This was prior to modelling the release mechanisms of PAHs by utilizing a mathematical diffusion-controlled leaching model.
View Article and Find Full Text PDFMaterials (Basel)
April 2020
Department of Construction and Road Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland.
Stiffness is an important mechanical characteristic of asphalt mixtures used in the wearing course. It is one of the determining factors in the generation of tyre/road noise. The dynamic stiffness of the upper layer of the road surface depends on the physical and mechanical properties of the materials it is composed of, and traffic load.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!