A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bioconversion of underutilized brewing by-products into bacterial cellulose by a newly isolated Komagataeibacter rhaeticus strain: A preliminary evaluation of the bioprocess environmental impact. | LitMetric

A novel Komagataeibacter rhaeticus UNIWA AAK2 strain was used to produce bacterial cellulose (BC), valorizing brewers' spent grain (BSG) and brewer's spent yeast (BSY). Under optimal conditions (controlled pH = 6 and 30 g/L sugars), a maximum BC of 4.0 g/L was achieved when BSG aqueous extract (BSGE) was used. The substitution of yeast extract and peptone with BSY autolyzates did not show significant differences on BC concentration and productivity. The FTIR, SEM, and TGA analyses showed that the use of brewing by-products had no effect on the structure and thermal stability of the produced BC, compared to highly-pure and commercial substrates. The LCA of the developed bioprocess revealed that BSGE- and BSY-based media can reduce the carbon footprint of 1 kg dry BC by 76% compared to commercial-based-media. Beer by-products could serve as cost-effective resources to produce value-added and sustainable biopolymers such as BC, while minimizing waste and restructuring the brewing-industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.129667DOI Listing

Publication Analysis

Top Keywords

brewing by-products
8
bacterial cellulose
8
komagataeibacter rhaeticus
8
bioconversion underutilized
4
underutilized brewing
4
by-products bacterial
4
cellulose newly
4
newly isolated
4
isolated komagataeibacter
4
rhaeticus strain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!