LcERF10 functions as a positive regulator of litchi fruitlet abscission.

Int J Biol Macromol

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Published: October 2023

Phytohormone ethylene is well-known in positive modulation of plant organ abscission. However, the molecular mechanism underlying ethylene-induced abscission remains largely unknown. Here, we identified an ethylene-responsive factor, LcERF10, as a key regulatory gene in litchi fruitlet abscission. LcERF10 was strongly induced in the fruitlet abscission zone (FAZ) during the ethylene-activated abscission. Silencing of LcERF10 in litchi weakened the cytosolic alkalization of the FAZ and reduced fruitlet abscission. Moreover, LcERF10 directly bound the promoter and repressed the expression of LcNHX7, a Na/H exchanger that was down-regulated in FAZ following the ethylene-activated abscission and up-regulated after LcERF10 silencing. Additionally, ectopic expression of LcERF10 in Arabidopsis promoted the cytosolic alkalization of the floral organ AZ and accelerated the floral organ abscission. Collectively, our results suggest that the transcription factor LcERF10 plays a positive role in litchi fruitlet abscission.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.126264DOI Listing

Publication Analysis

Top Keywords

fruitlet abscission
20
litchi fruitlet
12
abscission
10
lcerf10
8
organ abscission
8
factor lcerf10
8
abscission lcerf10
8
faz ethylene-activated
8
ethylene-activated abscission
8
cytosolic alkalization
8

Similar Publications

In citrus, the synthetic auxin 3,5,6-trichloro-2-pyridyloxyacetic acid (3,5,6-TPA), applied as a foliar spray at a concentration of 15 mg l during physiological fruitlet abscission, caused additional fruitlet drop and reduced the number of fruits reaching maturity. The effect was much more pronounced at full physiological abscission than after. In this study, this thinning effect was successfully exploited for the first time in sour orange trees grown in an urban environment, reducing harvesting costs by up to almost 40%.

View Article and Find Full Text PDF

LcMPK3 and LcMPK6 positively regulate fruitlet abscission in litchi.

Mol Hortic

August 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.

Mitogen-activated protein kinase (MAPK) cascades have been discovered to play a fundamental role in regulating organ abscission. However, the identity of protein substrates targeted by MAPK cascades, as well as whether the role of MAPK protein cascades in the abscission process is conserved across different plant species, remain unknown. Here, the role of homologs of MPK3 and MPK6 in regulating fruit abscission were characterized in litchi.

View Article and Find Full Text PDF

Yield in many crops is affected by abscission during the early stages of fruitlet development. The reasons for fruitlet abscission are often unclear but they may include genetic factors because, in some crops, self-pollinated fruitlets are more likely to abscise than cross-pollinated fruitlets. Pollen parentage can also affect final fruit size and fruit quality.

View Article and Find Full Text PDF

Corrigendum: The LcKNAT1-LcEIL2/3 regulatory module is involved in fruitlet abscission in litchi.

Front Plant Sci

April 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.

[This corrects the article DOI: 10.3389/fpls.2021.

View Article and Find Full Text PDF

Procedural abscission of outer reproductive organs during flower and fruit development occurs in most plant lineages. Undesired abscission, such as fruitlet shedding causes considerable yield loss in many fruit-producing species. Ethylene is one of the key factors regulating organ abscission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!