A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Strategies for strengthening toughened poly(lactic acid) blend via natural reinforcement with enhanced biodegradability: A review. | LitMetric

Strategies for strengthening toughened poly(lactic acid) blend via natural reinforcement with enhanced biodegradability: A review.

Int J Biol Macromol

Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.

Published: November 2023

The growing popularity of poly(lactic acid) (PLA) can be attributed to its favorable attributes, such as excellent compostability and robust mechanical properties. Two notable limitations of PLA are its high brittleness and slow biodegradation rate. Both of blending and copolymerization strategies work well to improve PLA's toughness while sacrificing the good tensile strength and modulus properties of PLA. One of the most effective and economical approaches to address this challenge is to incorporate natural reinforcing agents into the toughened PLA system, thereby simultaneously promoting the biodegradation rate of PLA. Nevertheless, the enhancement of tensile strength and modulus is accompanied by a notable decrease in elongation. Therefore, this review provides comprehensive information on the literature works related to the tensile strength, modulus, elongation at break and impact strength of the toughened PLA and its natural fiber reinforced composites. The impact of natural reinforcing agent on the tensile fracture mechanism as well as the synergistic effect on strengthening and toughening performance will be discussed. This review also focuses on the factors boosting the biodegradability of toughened PLA blend by using natural reinforcing fiber. Review presents potential future insights into the development of biodegradable and balanced strengthened-toughened PLA based advanced materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.126214DOI Listing

Publication Analysis

Top Keywords

tensile strength
12
strength modulus
12
natural reinforcing
12
toughened pla
12
polylactic acid
8
blend natural
8
pla
8
biodegradation rate
8
natural
5
strategies strengthening
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!