Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The growing popularity of poly(lactic acid) (PLA) can be attributed to its favorable attributes, such as excellent compostability and robust mechanical properties. Two notable limitations of PLA are its high brittleness and slow biodegradation rate. Both of blending and copolymerization strategies work well to improve PLA's toughness while sacrificing the good tensile strength and modulus properties of PLA. One of the most effective and economical approaches to address this challenge is to incorporate natural reinforcing agents into the toughened PLA system, thereby simultaneously promoting the biodegradation rate of PLA. Nevertheless, the enhancement of tensile strength and modulus is accompanied by a notable decrease in elongation. Therefore, this review provides comprehensive information on the literature works related to the tensile strength, modulus, elongation at break and impact strength of the toughened PLA and its natural fiber reinforced composites. The impact of natural reinforcing agent on the tensile fracture mechanism as well as the synergistic effect on strengthening and toughening performance will be discussed. This review also focuses on the factors boosting the biodegradability of toughened PLA blend by using natural reinforcing fiber. Review presents potential future insights into the development of biodegradable and balanced strengthened-toughened PLA based advanced materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.126214 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!