Objective: The individuals' genetic traits predispose them to a higher or lower risk of Type 2 diabetes mellitus (T2DM) and its complications, for example, acute coronary syndrome (ACS). As carbonyl stress is responsible for the pathogenesis and complications of T2DM, and glyoxalase 1 (GLO1) is the most crucial determinant of carbonyl stress, the study aimed to explore the association between GLO1 gene polymorphism, GLO1 activity in red blood cell (RBC), plasma methylglyoxal (MG) levels, and ACS risk in South Indian T2DM patients.

Methods: A total of 150 T2DM patients with ACS as cases and 150 T2DM patients without ACS as controls were recruited in a case-control study. The rs4746, rs1049346 and rs1130534 of the GLO1 gene were analysed using TaqMan allele discrimination assay. The RBC GLO1 activity and plasma MG levels were measured.

Results: Significantly lower RBC GLO1 activity and higher plasma MG levels were found in cases compared to controls (p < 0.001 and p = 0.008, respectively). The genotype and allele frequencies of rs1049346 significantly differed between cases and controls (p < 0.001). For rs1130534 and rs1049346, no significant difference was found. For rs1049346, the TT and CC genotypes were associated with higher (p = 0.002) and lower (p = 0.001) ACS risk, respectively, in various genetic models. The TT genotype of rs1049346 was associated with lower RBC GLO1 activity (p = 0.004) and higher MG level (p = 0.010). In haplotype analysis, higher ACS susceptibility with the TAT haplotype (p < 0.001) and lower ACS susceptibility with the TAC haplotype (p < 0.001) were observed. Also, lower RBC GLO1 activity was associated with the TAT haplotype (p = 0.002).

Conclusions: The rs1049346 of the GLO1 gene may be associated with ACS risk in South Indian T2DM patients, and the T and C allele might be essential precipitating and protective factors, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2023.147701DOI Listing

Publication Analysis

Top Keywords

glo1 activity
12
acute coronary
8
coronary syndrome
8
type diabetes
8
diabetes mellitus
8
carbonyl stress
8
glo1 gene
8
150 t2dm
8
t2dm patients
8
patients acs
8

Similar Publications

Methylglyoxal (MG) is an endogenously produced non-enzymatic side product of glycolysis that acts as a partial agonist at GABA receptors. MG that is metabolized by the enzyme glyoxalase-1 (GLO1). Inhibition of GLO1 increases methylglyoxal levels, and has been shown to modulate various behaviors, including decreasing seeking of cocaine-paired cues and ethanol consumption.

View Article and Find Full Text PDF

Introduction: Flavonoids including quercetin, kaempferol, myricetin, rutin etc. have always been a part of traditional Chinese medicine for the treatment of several ailments. Rutin (RT), also known as rutoside, sophorin is one of the flavanol glycoside having structure resemblance with quercetin.

View Article and Find Full Text PDF

GLO1 regulates hepatocellular carcinoma proliferation and migration through the cell cycle pathway.

BMC Cancer

October 2024

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.

Background: Hepatocellular carcinoma (HCC) is a malignant tumor characterized by a high mortality rate. The occurrence and progression of HCC are linked to oxidative stress. Glyoxalase-1 (GLO1) plays an important role in regulating oxidative stress, yet the underlying mechanism remains unclear.

View Article and Find Full Text PDF

A single dominant GLOBOSA allele accounts for repeated origins of hose-in-hose flowers in Sinningia (Gesneriaceae).

Plant Cell

December 2024

Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.

Plants bearing double flowers have long been cultivated as ornamental plants. Hose-in-hose flowers, bearing two-whorled corolla tubes in whorls 1 and 2, are uncommon but recur in Sinningia (Gesnerioideae, Gesneriaceae). In this study, we selected 15 hose-in-hose cultivars as materials to explore the underlying molecular and genetic mechanisms of this floral architecture.

View Article and Find Full Text PDF

Patients with chronic kidney disease (CKD) have a high incidence of dyslipidemia comprising high triglyceride (TG) and low high-density lipoprotein (HDL)-cholesterol levels. An abnormal increase of TGs within cells can lead to intracellular lipid accumulation. In addition to dyslipidemia, hyperglycemia in diabetes may elicit ectopic lipid deposition in non-adipose tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!