The present study tested whether energy-minimizing behaviors evoke reward-related brain activity that promotes the repetition of these behaviors via reinforcement learning processes. Fifty-eight healthy young adults in a standing position performed a task where they could earn a reward either by sitting down or squatting while undergoing electroencephalographic (EEG) recording. Reward-prediction errors were quantified as the amplitude of the EEG-derived reward positivity. Results showed that reward positivity was larger on reward versus no reward trials, confirming the validity of our paradigm to measure evoked reward-related brain activity. However, results showed no evidence that sitting (versus standing and squatting) trials led to larger reward positivity. Moreover, we found no evidence suggesting that this effect was moderated by typical physical activity, physical activity on the day of the study, or energy expenditure during the experiment. However, at the behavioral level, results showed that the probability of choosing the stimulus more likely to lead to sitting than standing increased as the number of trials increased. In addition, results revealed that the probability of changing the selected stimulus was higher when the previous trial was a stand trial relative to a sit trial. In sum, neural results showed no evidence supporting the theory that opportunities to minimize energy expenditure are rewarding. However, behavioral findings suggested participants tend to choose the less effortful behavioral alternative and were therefore consistent with the theory of effort minimization (TEMPA).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cortex.2023.06.011DOI Listing

Publication Analysis

Top Keywords

reward-related brain
12
brain activity
12
reward positivity
12
larger reward
8
physical activity
8
energy expenditure
8
reward
6
activity
5
relationship reward-related
4
activity opportunities
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!