Postmenopausal osteoporosis, a chronic condition that predominantly affects postmenopausal women, presents a significant impediment to their overall well-being. The condition arises from estrogen deficiency, leading to enhanced osteoclast activity. Salvia miltiorrhiza, a well-established Chinese herbal medicine with a history of clinical use for osteoporosis treatment, contains diverse active constituents that have shown inhibitory effects on osteoclast formation and bone loss. Dihydrotanshinone I (DTI), a phenanthrenonequinone compound derived from the root of Salvia miltiorrhiza, has been identified as a potential therapeutic agent, although its mechanism of action on osteoclasts remains elusive. In this study, we aimed to elucidate the inhibitory potential of DTI on RANKL-induced osteoclastogenesis. We observed the ability of DTI to effectively impede the expression of key osteoclast-specific genes and proteins, as assessed by Real-time PCR and Western Blotting analyses. Mechanistically, DTI exerted its inhibitory effects on osteoclast formation by modulating critical signaling pathways including NF-κB, ERK, and calcium ion signaling. Notably, DTI intervention disrupted the nuclear translocation and subsequent transcriptional activity of the NFATc1, thus providing mechanistic insights into its inhibitory role in osteoclastogenesis. To further assess the therapeutic potential of DTI, we employed an ovariectomized osteoporosis animal model to examine its impact on bone loss. Encouragingly, DTI demonstrated efficacy in mitigating bone loss induced by estrogen deficiency. In conclusion, our investigation elucidates the ability of DTI to regulate multiple signaling pathways activated by RANKL, leading to the inhibition of osteoclast formation and prevention of estrogen-deficiency osteoporosis. Consequently, DTI emerges as a promising candidate for the treatment of osteoporosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2023.110572DOI Listing

Publication Analysis

Top Keywords

bone loss
16
signaling pathways
12
osteoclast formation
12
dti
9
nf-κb erk
8
estrogen deficiency
8
salvia miltiorrhiza
8
inhibitory effects
8
effects osteoclast
8
potential dti
8

Similar Publications

Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.

View Article and Find Full Text PDF

Bone homeostasis encompasses two interrelated aspects: bone remodeling and cartilage metabolism. Disruption of bone homeostasis can lead to the development of metabolic bone diseases such as osteoporosis and osteoarthritis. The maintenance of bone homeostasis is a complex process that does not solely rely on the functions of the bone tissue itself.

View Article and Find Full Text PDF

Postmenopausal osteoporosis is a chronic inflammatory disease characterized by decreased bone mass and increased bone fracture risk. Estrogen deficiency during menopause plays a major role in post-menopausal osteoporosis by influencing bone, immune, and gut cell activity. In the gut, estrogen loss decreases tight junction proteins that bind epithelial cells of the intestinal barrier together.

View Article and Find Full Text PDF

Contemporary therapies following heart failure center on regenerative approaches to account for the loss of cardiomyocytes and limited regenerative capacity of the adult heart. While the delivery of cardiac progenitor cells has been shown to improve cardiac function and repair following injury, recent evidence has suggested that their paracrine effects (or secretome) provides a significant contribution towards modulating regeneration, rather than the progenitor cells intrinsically. The direct delivery of secretory biomolecules, however, remains a challenge due to their lack of stability and tissue retention, limiting their prolonged therapeutic efficacy.

View Article and Find Full Text PDF

Background: Patients with chronic kidney disease (CKD) have serum, bone, and vascular abnormalities presenting as chronic kidney disease-mineral bone disorder (CKD-MBD) syndrome. This study sought to identify the parameters with the greatest relative impact on progression of CKD-MBD abnormalities.

Materials And Methods: This prospective study measured 237 parameters including serum markers, clinical variables, dual-energy X-ray absorptiometry (DXA) measurements, vascular calcifications, and histomorphometric results from bone samples obtained at baseline and after 2 - 3 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!