Emission standards in European Union, designed to reduce the environmental impact of power generation, present a significant challenge for fast-response distributed power generation systems based on internal combustion engines. Regulated emissions, such as NO and particulate matter present a major concern due to their adverse number of environmental and health effects. Simultaneously, European Union strives towards sustainable management of plastic waste and seeks the ways for its upcycling and production of new fuels and chemicals. As an answer to the presented challenges, the present experimental study addresses the potential for use of chemically stabilized Waste Plastics Oil (WPO), a product of pyrolysis process of waste plastics in a Reactivity Controlled Compression Ignition (RCCI) combustion concept. To establish a reactivity-controlled combustion, the study uses a combination of methane (a model fuel for biomethane) and WPO to a) simultaneously reduce NO and particulate matter emissions due to low local combustion temperatures and a high degree of charge homogenization and b) address waste and carbon footprint reduction challenges. Through experiments, influence of direct injection timing and energy shares of utilized fuels to in-cylinder thermodynamic parameters and engine emission response were evaluated in engine operating points at constant indicated mean effective pressure. Acquired results were deeply investigated and benchmarked against compression ignition (CI) and RCCI operation with conventional diesel fuel to determine potential for WPO utilization in an advanced low-temperature combustion concept. Results show that chemically stabilized WPO can be efficiently utilized in RCCI combustion concept without adaptation of injection parameters and that with suitable control parameters, ultra-low emissions of NO and PM can be achieved with utilized fuels. For diesel/methane mix, NO and PM emissions were reduced compared to conventional CI operation for 82.0% and 93.2%, respectively, whereas for WPO/methane mix, NO and PM emissions were reduced for 88.7% and 97.6%, respectively, which can be ascribed to favourable chemical characteristics of WPO for the utilized combustion concept. In the least favourable operating point among those studied, indicated mean effective pressure covariance was kept below 2.5%, which is well below 5% being considered the limit for stable engine operation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.118711 | DOI Listing |
J Am Chem Soc
January 2025
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
Aqueous zinc (Zn) metal batteries (ZMBs) have received great attention due to their safety and environmental friendliness. Although aqueous electrolytes facilitate fast kinetics in metal oxide cathodes, their incompatibility with the Zn metal anodes triggers severe hydrogen evolution reaction (HER) and dendrite growth. Herein, a self-phase separated electrolyte (SPSE) is proposed to fulfill the contradictory requirements of the anode and cathode in ZMBs.
View Article and Find Full Text PDFEntropy (Basel)
November 2024
Department Physik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany.
Entropy and energy had not yet been introduced to physics by the time Carnot wrote his seminal Réflexions. Scholars continue to discuss what he really had in mind and what misconceptions he might have had. Actually, his work can be read as a correct introduction to the physics of heat engines when the term calorique is replaced by entropy and entropy is used as the other fundamental thermal quantity besides temperature.
View Article and Find Full Text PDFNano Lett
January 2025
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
Developing sustainable structural materials to replace traditional carbon-intensive structural materials fundamentally reshapes the concept of circular development. Herein, we propose an interface engineering strategy that utilizes water as a liquid medium to replace the residual air within natural wood. This approach minimizes the absorption of water-based softening agents by microcapillary channels of wood, enabling the controlled softening of the cell walls.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
Growing global population, escalating energy consumption, and climate change threaten future energy security. Fossil fuel combustion, primarily coal, oil, and natural gas, exacerbates the greenhouse effect driving global warming through CO emissions. To address such issues, research is focused on converting CO into valuable fuels and chemicals, which aims to reduce noxious CO and simultaneously bridge the gap between energy demands and sustainable supply.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), 430074 Wuhan, China.
A multi-scale model is crucial for combining experiments and simulations to reveal the energy storage mechanism. As novel electrode materials, conductive metal-organic frameworks (c-MOFs) provide an ideal platform for understanding the energy storage process in supercapacitors. However, the prevailing circuit models lack consideration of the distinctive transmission path of c-MOFs, which hinders accurate descriptions of c-MOF supercapacitors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!