Cryoconite, the dark sediment on the surface of glaciers, often aggregates into oval or irregular granules serving as biogeochemical factories. They reduce a glacier's albedo, act as biodiversity hotspots by supporting aerobic and anaerobic microbial communities, constitute one of the organic matter (OM) sources on glaciers, and are a feeder for micrometazoans. Although cryoconite granules have multiple roles on glaciers, their formation is poorly understood. Cyanobacteria are ubiquitous and abundant engineers of cryoconite hole ecosystems. This study tested whether cyanobacteria may be responsible for cryoconite granulation as a sole biotic element. Incubation of Greenlandic, Svalbard, and Scandinavian cyanobacteria in different nutrient availabilities and substrata for growth (distilled water alone and water with quartz powder, furnaced cryoconite without OM, or powdered rocks from glacial catchment) revealed that cyanobacteria bind mineral particles into granules. The structures formed in the experiment resembled those commonly observed in natural cryoconite holes: they contained numerous cyanobacterial filaments protruding from aggregated mineral particles. Moreover, all examined strains were confirmed to produce extracellular polymeric substances (EPS), which suggests that cryoconite granulation is most likely due to EPS secretion by gliding cyanobacteria. In the presence of water as the only substrate for growth, cyanobacteria formed mostly carpet-like mats. Our data empirically prove that EPS-producing oscillatorialean cyanobacteria isolated from the diverse community of cryoconite microorganisms can form granules from mineral substrate and that the presence of the mineral substrate increases the probability of the formation of these important and complex biogeochemical microstructures on glaciers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jpy.13372 | DOI Listing |
Chemosphere
November 2024
Department of Mass Spectrometry, Institute of Nuclear Physics Polish Academy of Sciences, Ul. Radzikowskiego 152, 31-342 Kraków, Poland.
Cryoconite, granule-shaped debris found on the surface of glaciers, is known for trapping substantial quantities of pollutants such as radioactive nuclides and heavy metals. This study investigates contamination levels, sources and spatial variability of natural and artificial radioisotopes in cryoconite from Mittivakkat Gletsjer in southeast Greenland by determining the activity and atomic ratios of selected radionuclides. The maximum activity concentrations of artificial radioisotopes were 1129 ± 34 Bq kg for Cs, 3.
View Article and Find Full Text PDFChemosphere
January 2024
Department of Animal Taxonomy and Ecology, Adam Mickiewicz University in Poznań, Poland.
Contemporary melting glaciers are considered a secondary source of pollutants including radionuclides. Cryoconite - biogenic sediment on the glacier surface - exhibits high concentrations of natural and anthrophogenic radioisotopes. Understanding the interactions between radioisotopes and organisms is essential for evaluating their potential impact on glacier-related ecosystems.
View Article and Find Full Text PDFMicrobiome
October 2023
Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China.
Background: Glaciers harbor diverse microorganisms adapted to extreme conditions with high radiation, fluctuating temperature, and low nutrient availability. In glacial ecosystems, cryoconite granules are hotspots of microbial metabolic activity and could influences the biogeochemical cycle on glacier surface. Climate change could influence glacier dynamics by changing regional meteorological factors (e.
View Article and Find Full Text PDFJ Phycol
October 2023
Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.
Cryoconite, the dark sediment on the surface of glaciers, often aggregates into oval or irregular granules serving as biogeochemical factories. They reduce a glacier's albedo, act as biodiversity hotspots by supporting aerobic and anaerobic microbial communities, constitute one of the organic matter (OM) sources on glaciers, and are a feeder for micrometazoans. Although cryoconite granules have multiple roles on glaciers, their formation is poorly understood.
View Article and Find Full Text PDFMicrobiome
March 2022
Center for Life Science Research, University of Yamanashi, Yamanashi, Japan.
Background: Cryoconite granules are mineral-microbial aggregates found on glacier surfaces worldwide and are hotspots of biogeochemical reactions in glacier ecosystems. However, despite their importance within glacier ecosystems, the geographical diversity of taxonomic assemblages and metabolic potential of cryoconite communities around the globe remain unclear. In particular, the genomic content of cryoconite communities on Asia's high mountain glaciers, which represent a substantial portion of Earth's ice masses, has rarely been reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!