Hardware implementation tailored to requirements in reservoir computing would facilitate lightweight and powerful temporal processing. Capacitive reservoirs would boost power efficiency due to their ultralow static power consumption but have not been experimentally exploited yet. Here, this work reports an oxide-based memcapacitive synapse (OMC) based on Zr-doped HfO (HZO) for a power-efficient and multisensory processing reservoir computing system. The nonlinearity and state richness required for reservoir computing could originate from the capacitively coupled polarization switching and charge trapping of hafnium-oxide-based devices. The power consumption (≈113.4 fJ per spike) and temporal processing versatility outperform most resistive reservoirs. This system is verified by common benchmark tasks, and it exhibits high accuracy (>94%) in recognizing multisensory information, including acoustic, electrophysiological, and mechanic modalities. As a proof-of-concept, a touchless user interface for virtual shopping based on the OMC-based reservoir computing system is demonstrated, benefiting from its interference-robust acoustic and electrophysiological perception. These results shed light on the development of highly power-efficient human-machine interfaces and machine-learning platforms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202305609 | DOI Listing |
Sci Rep
December 2024
Department of Applied Mathematics, Tokyo University of Science, Shinjuku, Tokyo, 162-8601, Japan.
Reservoir computing is a machine learning framework that exploits nonlinear dynamics, exhibiting significant computational capabilities. One of the defining characteristics of reservoir computing is that only linear output, given by a linear combination of reservoir variables, is trained. Inspired by recent mathematical studies of generalized synchronization, we propose a novel reservoir computing framework with a generalized readout, including a nonlinear combination of reservoir variables.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mathematics, Payame Noor University, Tehran, Iran.
In the realm of petroleum extraction, well productivity declines as reservoirs deplete, eventually reaching a point where continued extraction becomes economically unfeasible. To counteract this, artificial lift techniques are employed, with gas injection being a prevalent method. Ideally, unrestricted gas injection could maximize oil output.
View Article and Find Full Text PDFTrop Med Infect Dis
December 2024
Evolutionary Ecology Group, Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium.
is a vector of , the causative agent of cutaneous leishmaniasis. This study assessed the abundance and distribution of in different habitats and human houses situated at varying distances from hyrax (reservoir host) dwellings, in Wolaita Zone, southern Ethiopia. Sandflies were collected from January 2020 to December 2021 using CDC light traps, sticky paper traps, and locally made emergence traps.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
IDLab-AIRO, Faculty of Engineering and Architecture, Ghent University, 9052 Ghent, Belgium.
The performance of echo state networks (ESNs) in temporal pattern learning tasks depends both on their memory capacity (MC) and their non-linear processing. It has been shown that linear memory capacity is maximized when ESN neurons have linear activation, and that a trade-off between non-linearity and linear memory capacity is required for temporal pattern learning tasks. The more recent distance-based delay networks (DDNs) have shown improved memory capacity over ESNs in several benchmark temporal pattern learning tasks.
View Article and Find Full Text PDFACS Catal
December 2024
Department of Crystallography and Structural Biology, Consejo Superior de Investigaciones Científicas, Instituto de Química-Física "Blas Cabrera", Madrid 28006, Spain.
Remodeling of the pneumococcal cell wall, carried out by peptidoglycan (PG) hydrolases, is imperative for maintaining bacterial cell shape and ensuring survival, particularly during cell division or stress response. The protein Spr1875 plays a role in stress response, both regulated by the VicRK two-component system (analogous to the WalRK TCS found in Firmicutes). Modular Spr1875 presents a putative cell-wall binding module at the N-terminus and a catalytic C-terminal module (Spr1875) connected by a long linker.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!