The advances in nucleic acid nanotechnology have given rise to various elegantly designed structural complexes fabricated from DNA, RNA, chemically modified RNA strands, and their mixtures. The structural properties of NA nanoparticles (NANP) generally dictate and significantly impact biological function; and thus, it is critical to extract information regarding relative stabilities of the different structural forms. The adequate stability assessment requires knowledge of thermodynamic parameters that can be empirically derived using conventional UV-melting technique. The focus of this chapter is to describe methodology to evaluate thermodynamic data of NANPs complexation based on DNA 12 base-pair (bp) duplex formation as an example.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3417-2_9DOI Listing

Publication Analysis

Top Keywords

nucleic acid
8
thermodynamic characterization
4
characterization nucleic
4
acid nanoparticles
4
nanoparticles hybridization
4
hybridization melting
4
melting advances
4
advances nucleic
4
acid nanotechnology
4
nanotechnology rise
4

Similar Publications

Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation.

View Article and Find Full Text PDF

Magnesium (Mg) an essential plant nutrient is widespread deficient in the acidic soils of Nilgiris of Tamil nadu, India. The vegetable yield and quality is especially affected due to deficiency of nutrients like Mg. This study investigates soil characteristics and bacterial diversity in the Nilgiris district of Tamil Nadu, India, with respect to Mg deficiency.

View Article and Find Full Text PDF

Hsa_circ_0001304 promotes vascular neointimal hyperplasia accompanied by autophagy activation.

Commun Biol

January 2025

Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.

Aberrant autophagy in vascular smooth muscle cells (VSMCs) is associated with the progression of vascular remodeling diseases caused by neointimal hyperplasia. Platelet-derived growth factor-BB (PDGF-BB)-induced vascular remodeling is accompanied by autophagy activation, however, the involvement of circular RNAs (circRNAs) remains unclear. Here, we show the role of PDGF-BB-regulated hsa_circ_0001304 (circ-1304) in neointimal hyperplasia and its potential involvement in VSMC autophagy, while also elucidating the potential mechanisms.

View Article and Find Full Text PDF

scATAC-seq generates more accurate and complete regulatory maps than bulk ATAC-seq.

Sci Rep

January 2025

MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK.

Bulk ATAC-seq assays have been used to map and profile the chromatin accessibility of regulatory elements such as enhancers, promoters, and insulators. This has provided great insight into the regulation of gene expression in many cell types in a variety of organisms. To date, ATAC-seq has most often been used to provide an average evaluation of chromatin accessibility in populations of cells.

View Article and Find Full Text PDF

Prostate cancer presents a major health issue, with its progression influenced by intricate molecular factors. Notably, the interplay between miRNAs and changes in transcriptomic patterns is not fully understood. Our study seeks to bridge this knowledge gap, employing computational techniques to explore how miRNAs and transcriptomic alterations jointly regulate the development of prostate cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!