The use of supplementary cementitious materials is customary in contemporary concretes. Different industrial by-products and waste materials have been investigated earlier for such applications. In this paper, the use of organic light-emitting diode glass (OLED) display waste as a partial replacement of cement binder in concretes has been explored. Concretes with 10%, 20%, and 30% substitution (by weight) of ordinary Portland cement (OPC) by OLED powder were developed, and the resulting mechanical properties and durability characteristics were evaluated. The results showed that OLED addition leads to strength improvement of up to 8% after 28-day age. Also, the resistance to chloride-ion penetration and sulfate attack improved considerably. The chloride binding capacity for the developed concretes was also investigated. It was demonstrated that the OLED powder incorporation is beneficial in improving the corrosion resistance of the modified concrete. The enhanced mechanical and durability properties of modified concrete point toward the excellent performance of OLED-incorporated concrete for improved service life. Incorporating OLED display waste in concrete as a partial cement replacement can also reduce environmental burden and concrete cost.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-29213-1DOI Listing

Publication Analysis

Top Keywords

oled display
12
display waste
12
organic light-emitting
8
light-emitting diode
8
cement binder
8
oled powder
8
modified concrete
8
oled
6
concrete
5
durability concrete
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!