Enhanced laccase activity in Trametes versicolor (L.: Fr.) Pilát by host substrate and copper.

Braz J Microbiol

Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.

Published: September 2023

AI Article Synopsis

  • Laccases from the fungus Trametes versicolor have potential for various industrial applications, with this specific fungus being a notable laccase producer.
  • A native isolate of T. versicolor was identified and tested for laccase production using different plant substrates, particularly oak sawdust, which significantly boosted enzyme yield.
  • Copper addition also enhanced laccase output, with optimal results obtained using 3.5 mM of CuSO combined with oak sawdust, suggesting a cost-effective method for laccase production.

Article Abstract

Laccases are appealing biocatalysts for various industrial utilizations. The fungus Trametes versicolor (L.: Fr.) Pilát causes white rot in wood and has been identified as an important fungal laccase producer. To investigate laccase production and activity in T. versicolor, the native isolate was collected from the host (Quercus castaneifolia) in the forests of Guilan province, northern Iran, and then purified and identified using the molecular marker. Its ability to produce laccase enzyme in the presence of different plant substrates including sawdust and wood chips of oak, poplar, and pine was evaluated. Also, the effect of copper as an enzyme inducer was investigated in vitro. The results showed that adding the wood to the culture medium increased laccase production, and among these, oak sawdust had the greatest effect, a 1.7-fold increase from that in the control (4.8 u/l vs. 2.8 u/l). Also, the enzyme extraction time effect on the optimal recovery yield showed that the 5-h enzyme extraction cycle resulted in the highest yield of the enzyme (18.97 u/l). Moreover, adding different concentrations of copper to the fungal culture medium increased the production of laccase, and the highest amount of enzyme (92.04 u/l) was obtained with 3.5 mM of CuSO along with oak sawdust. Based on the results, the addition of host wood sawdust ("oak" in this work) and copper particles together stimulates the fungal growth and the laccase production during submerged cultivation of T. versicolor. Therefore, it would be a safe and cheap strategy for the commercial production of laccase by filamentous fungi.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10484868PMC
http://dx.doi.org/10.1007/s42770-023-01096-xDOI Listing

Publication Analysis

Top Keywords

laccase production
12
trametes versicolor
8
versicolor pilát
8
culture medium
8
medium increased
8
oak sawdust
8
enzyme extraction
8
production laccase
8
laccase
7
enzyme
6

Similar Publications

[Directed evolution improves the catalytic activity of laccase in papermaking].

Sheng Wu Gong Cheng Xue Bao

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, Hubei, China.

As a biocatalyst, laccase has been widely studied and applied in the papermaking industry. However, the low catalytic efficiency and poor stability of natural laccase limit its application in the pulping process. To develop the laccase with high activity and strong tolerance, we carried out directed evolution for modification of the laccase derived from and screened out the mutants F282L/F306L and Q275P from the random mutant library by high-throughput screening.

View Article and Find Full Text PDF

LACCASE35 Enhances Lignification and Resistance Against Pseudomonas syringae pv. actinidiae Infection in Kiwifruit.

Plant Physiol

January 2025

Anhui Key Laboratory for Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, P.R.  China.

Kiwifruit bacterial canker, a highly destructive disease caused by Pseudomonas syringae pv. actinidiae (Psa), seriously affects kiwifruit (Actinidia spp.) production.

View Article and Find Full Text PDF

Exploiting CotA laccase from Antarctic Bacillus sp. PAMC28748 for efficient mediator-assisted dye decolorization and ABTS regeneration.

Chemosphere

January 2025

Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea; Genome-based Bio-IT Convergence Institute, Asan, 31460, Republic of Korea; Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, 31460, Republic of Korea; Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, 31460, Republic of Korea. Electronic address:

Laccases are of particular interest in addressing environmental challenges, such as the degradation of triphenylmethane (TPM) dyes, including crystal violet (CV) and Coomassie Brilliant Blue (CBB), which are commonly used in SDS-PAGE for protein visualization. However, these dyes present significant environmental concerns due to their resistance to degradation, which makes their removal from industrial wastewater a major challenge. To address this, the current study investigates the potential of a novel CotA laccase derived from Bacillus sp.

View Article and Find Full Text PDF

Endophytic fungi associated with selected aquatic plants, and were evaluated. sp. nov.

View Article and Find Full Text PDF

Synthesis and antifungal activity of aldehydes-thiourea derivatives as promising antifungal agents against  postharvest gray mold disease.

Chem Biodivers

January 2025

Chuxiong Normal University, Academy of Science and Technology, Chuxiong Normal University, Chuxiong, 675000,China, No. 456 Luchengnan Road, chuxiong, Academy of Science and Technology, 651000, chuxiong, CHINA.

Gray mold disease is caused by B. cinerea, which could severely reduce the production yield and quality of tomatoes. To explore more potential fungicides with new scaffolds for controlling the gray mold disease, ten aldehydes-thiourea derivatives were designed, synthesized and assayed for inhibitory activity against three plant pathogenic fungi.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!