Modifications of multiple copies of the BnaSAD2 gene family with genomic editing technology result in higher stearic acid content in the seed of polyploidy rapeseed. Solid fats from vegetable oils are widely used in food processing industry. Accumulating data showed that stearic acid is more favorite as the major composite among the saturate fatty acids in solid fats in considerations of its effects on human health. Rapeseed is the third largest oil crop worldwide, and has potential to be manipulated to produce higher saturated fatty acids as raw materials of solid fats. Toward that end, we identified four SAD2 gene family members in B. napus genome and established spatiotemporal expression pattern of the BnaSAD2 members. Genomic editing technology was applied to mutate all the copies of BnaSAD2 in this allopolyploid species and mutants at multiple alleles were generated and characterized to understand the effect of each BnaSAD2 member on blocking desaturation of stearic acid. Mutations occurred at BnaSAD2.A3 resulted in more dramatic changes of fatty acid profile than ones on BnaSAD2.C3, BnaSAD2.A5 and BnaSAD2.C4. The content of stearic acid in mutant seeds with single locus increased dramatically with a range of 3.1-8.2%. Furthermore, combination of different mutated alleles of BnaSAD2 resulted in more dramatic changes in fatty acid profiles and the double mutant at BnaSAD2.A3 and BnaSAD2.C3 showed the most dramatic phenotypic changes compared with its single mutants and other double mutants, leading to 11.1% of stearic acid in the seeds. Our results demonstrated that the members of BnaSAD2 have differentiated in their efficacy as a Δ9-Stearoyl-ACP-Desaturase and provided valuable rapeseed germplasm for breeding high stearic rapeseed oil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-023-04414-x | DOI Listing |
Int J Biol Macromol
January 2025
Department of Chemical, Metallurgical and Materials Engineering (Polymer Division), Institute of NanoEngineering Research (INER), Tshwane University of Technology, Pretoria, South Africa.
This work investigates the adhesive property of Soy Protein Isolate(SPI)polymer solution by studying mechanical properties of composites formed using waste wood granules and SPI solutions. To improve the adhesive strength of SPI solution, Carboxymethyl Cellulose Sodium(NaCMC)was mixed (in the weight ratios of 9:1 and 8:2) due to its strong gel formation capabilities. The adhesive performance of these composites was further investigated in the presence and absence of non-toxic additives, including sorbitol (SOR) and stearic acid (SA).
View Article and Find Full Text PDFFront Microbiol
December 2024
Plant Pathology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India.
The Western Ghats of India is recognized as one of the world's eight "hottest hotspots" of biological diversity. -a well-known biocontrol agent, was explored from this hotspot. A total of 260 spp.
View Article and Find Full Text PDFJ Oleo Sci
January 2025
Graduate School of Science and Engineering, Saitama University.
Gel coating films comprising nanodiamonds organo-modified with 12-hydroxystearic (12-OHC ) and stearic acids were prepared and characterized. Because molecules with 12-OHC groups can convert solvents into thixotropic gels, Gemini-type diamide derivatives with two 12-OHC chains were also introduced as thixotropic additives into the gel coating films. Although the 12-OHC -modified nanodiamonds did not lead to solvent gelation on their own, they displayed an affinity for the thixotropic additive molecules.
View Article and Find Full Text PDFCurr Microbiol
January 2025
División Agroalimentaria, Universidad Tecnológica de la Selva, C.P. 29950, Ocosingo, Chiapas, Mexico.
In the present study, the nematicidal and fungicidal activity of the biosurfactant (BS) produced by the strain Serratia ureilytica UTS was evaluated. The highest mortality of J2 juveniles of the nematode Nacobbus aberrans was 92.3% at a concentration of 30 mg/mL.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Mining Engineering, Faculty of Engineering, Hadimkoy Campus, Istanbul University - Cerrahpasa, 34500, Istanbul, Turkiye.
One of the challenges encountered in mining is acid mine drainage (AMD) in sulphurous ores in response to rainfall and groundwater. CPB one of the most prevalent waste management systems addresses this issue today. Nevertheless, in the long term, the concretion in CPB may become ineffective because of external factors, such as groundwater and rainfall.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!