Background: Occupational and environmental exposure to lead (Pb) is a persistent health problem majorly in developing countries and has been implied to cause epigenetic alterations. Its effect on histone post-translational modifications is not explored in human population. MicroRNAs are epigenetic modulators reported to be differentially expressed under Pb exposure. The present study was targeted to find plausible association between the role of hsa-miR-146a and global histone (H3) acetylation in Pb-induced inflammation in occupationally exposed workers.
Materials And Methods: A total of 100 occupationally exposed individuals working in different industries were recruited for the study and divided into 2 groups based on the median Pb levels [low Pb group (Pb < 5 μg/dL) and High Pb group (Pb > 5 μg/dL)]. The Pb levels were measured in whole blood using atomic absorption spectrometry to confirm Pb exposure. Histone H3 acetylation and serum interleukin-6 (IL-6) levels were measured using colorimetric methods and enzyme-linked immunosorbent assay (ELISA), respectively. MicroRNA-146a expression was quantified using TaqMan assay.
Results: The median BLL of the study population was 5 μg/dL. BLL, IL-6, and Histone (H3) acetylation increased significantly with the duration of exposure. BLL level showed a significant positive correlation with IL-6 and histone H3 acetylation level. We also found that hsa-miR-146a exhibited significantly increased expression in the high Pb group compared to the low Pb group (Fold change: 2.56; P = 0.014). The linear regression model suggested that BLL has significantly predicted histone H3 acetylation, hsa-miR-146a, and IL-6 in the study subjects.
Conclusion: The finding that hsa-miR146a was significantly upregulated in individuals with high BLL and had a significant negative correlation with serum IL-6 suggests that Pb-induced oxidative stress likely activates H3 acetylation, which then releases inflammatory cytokines like IL-6.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00420-023-02004-4 | DOI Listing |
Cell Biol Toxicol
January 2025
Department of Ultrasound, Shengjing Hospital of China Medical University, 110004, Shenyang, Liaoning, China.
Histone acetyltransferases p300 (E1A-associated protein p300) and CBP (CREB binding protein), collectively known as p300/CBP due to shared sequence and functional synergy, catalyze histone H3K27 acetylation and consequently induce gene transcription. p300/CBP over-expression or over-activity activates the transcription of oncogenes, leading to cancer cell growth, resistance to apoptosis, tumor initiation and development. The discovery of small molecule inhibitors targeting p300/CBP histone acetyltransferase activity, bromodomains, dual inhibitors of p300/CBP and BRD4 bromodomains, as well as proteolysis-targeted-chimaera p300/CBP protein degraders, marks significant progress in cancer therapeutics.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq.
Histone acetylation is the process by which histone acetyltransferases (HATs) add an acetyl group to the N-terminal lysine residues of histones, resulting in a more open chromatin structure. Histone acetylation tends to increase gene expression more than methylation does. In the central nervous system (CNS), histone acetylation is essential for controlling the expression of genes linked to cognition and learning.
View Article and Find Full Text PDFNat Cancer
January 2025
Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
Cancer cells frequently rewire their metabolism to support proliferation and evade immune surveillance, but little is known about metabolic targets that could increase immune surveillance. Here we show a specific means of mitochondrial respiratory complex I (CI) inhibition that improves tumor immunogenicity and sensitivity to immune checkpoint blockade (ICB). Targeted genetic deletion of either Ndufs4 or Ndufs6, but not other CI subunits, induces an immune-dependent growth attenuation in melanoma and breast cancer models.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea.
Melanosome transport is regulated by major proteins, including Rab27a, Melanophilin (Mlph), and Myosin Va (Myo-Va), that form a tripartite complex. Mutation of these proteins causes melanosome aggregation around the nucleus. Among these proteins, Mlph is a linker between Rab27a and Myo-Va.
View Article and Find Full Text PDFJ Oral Biosci
January 2025
Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan. Electronic address:
Objectives: Exposure of gingival epithelial cells to butyrate, a short-chain fatty acid produced by dental plaque bacteria, cause cell death and subsequent damage-associated molecular pattern (DAMP) release. We investigated the effects of curcumin, a polyphenol extracted from turmeric, on butyrate-induced human gingival epithelial Ca9-22 cell death and DAMP release.
Methods: Ca9-22 cells were pretreated with curcumin before butyrate exposure.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!