Biological processes underlying decreased cerebral blood flow (CBF) in patients with cardiovascular disease (CVD) are largely unknown. We hypothesized that identification of protein clusters associated with lower CBF in patients with CVD may explain underlying processes. In 428 participants (74% cardiovascular diseases; 26% reference participants) from the Heart-Brain Connection Study, we assessed the relationship between 92 plasma proteins from the Olink® cardiovascular III panel and normal-appearing grey matter CBF, using affinity propagation and hierarchical clustering algorithms, and generated a Biomarker Compound Score (BCS). The BCS was related to cardiovascular risk and observed cardiovascular events within 2-year follow-up using Spearman correlation and logistic regression. Thirteen proteins were associated with CBF (ρ range: -0.10 to -0.19, p <0.05), and formed one cluster. The cluster primarily reflected extracellular matrix organization processes. The BCS was higher in patients with CVD compared to reference participants (p <0.05) and was associated with cardiovascular risk (ρ 0.42, p < 0.001) and cardiovascular events (OR 2.05, p < 0.01). In conclusion, we identified a cluster of plasma proteins related to CBF, reflecting extracellular matrix organization processes, that is also related to future cardiovascular events in patients with CVD, representing potential targets to preserve CBF and mitigate cardiovascular risk in patients with CVD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10925867 | PMC |
http://dx.doi.org/10.1177/0271678X231195243 | DOI Listing |
Jpn J Ophthalmol
January 2025
Department of Neurology, Yokohama Brain and Spine Center, Yokohama, Japan.
Purpose: To assess the effects of modifying head position and of static ocular counter-rolling (OCR) on abduction and adduction in saccadic eye movements using a head-mounted video-oculographic device.
Study Design: A clinical observational study.
Methods: The peak velocities and amplitude gains of visually guided 12° saccades were binocularly measured in 21 healthy volunteers with their heads in the upright vertical (0°) and horizontal (± 90°, bilateral side-lying) postures, and in 6 participants with their head positions bilaterally tilted by 30°.
Alzheimers Dement
December 2024
University of Michigan, Ann Arbor, MI, USA.
Background: Alzheimer's disease (AD) is the leading cause of dementia worldwide. The recent announcement that lecanemab, a monoclonal antibody targeting amyloid-b, can slow down cognitive decline in AD is a great step forward in the battle against the disease. However, the modest success achieved in the clinical trial speak to the need for developing additional pharmaceutical approaches to target other key features of AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Laboratory for Neuropathology, KU Leuven, Leuven, Belgium.
Background: In 43-63% of symptomatic Alzheimer's disease (AD) patients, there is an observed accumulation of misfolded alpha-synuclein (αSyn). Two primary αSyn subtypes have been identified based on the underlying spreading pattern of this pathology: caudo-rostral and amygdala-predominant. Interactions between pathological TDP-43, Tau, and αSyn can aggravate their spread and aggregation.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Sapienza University of Rome, Rome, Rome, Italy.
Background: Biological sex influences Alzheimer's disease (AD) development, particularly concerning brain insulin resistance (bIR) and early energy metabolism defects. Biliverdin reductase-A (BVR-A) plays a crucial role in insulin signaling, and its downregulation leads to bIR. However, the sex-related differences in AD neuropathology and underlying mechanisms remain unclear.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Washington University School of Medicine, Saint Louis, MO, USA.
Background: A recent case report described an individual who was a homozygous carrier of the APOE3 Christchurch (APOE3ch) mutation and resistant to autosomal dominant Alzheimer's Disease (AD) caused by a PSEN1-E280A mutation. Whether APOE3ch contributed to the protective effect remains unclear.
Method: We generated a humanized APOE3ch knock-in mouse and crossed it to an amyloid-β (Aβ) plaque-depositing model.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!