Obesity increases the risk for stroke and is associated with worse post-stroke outcomes; however, the mechanisms are poorly understood. Diet-induced obesity leads to insulin resistance and subsequently, brain insulin deficiency. The purpose of this study was to investigate the potential impact of brain insulin deficiency on post-stroke outcomes. To accomplish this, brain insulin levels were assessed in male C57BL/6J (B6) mice placed on either a standard diet or 54% kcal high-fat diet, a known model of insulin resistance. Mice were subjected to either a sham surgery (control) or 30-min middle cerebral artery occlusion to induce an ischemic stroke and administered either intranasal saline (0.9%) or intranasal insulin (1.75 U) twice daily for 5 days beginning on day 1 post-stroke. High-fat diet-induced brain insulin deficiency was associated with increased mortality, neurological and cognitive deficits. On the other hand, increasing brain insulin levels via intranasal insulin improved survival, neurological and cognitive function in high-fat diet mice. Our data suggests that brain insulin deficiency correlates with worse post-stroke outcomes in a diet-induced mouse model of insulin resistance and increasing brain insulin levels may be a therapeutic target to improve stroke recovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10664462 | PMC |
http://dx.doi.org/10.1002/jnr.25237 | DOI Listing |
Sci Rep
January 2025
Department of Neurosurgery, The Second Affiliated Clinical Medical College of Fujian, Medical University, Quanzhou, 362000, China.
Acute kidney injury (AKI) is associated with adverse hospitalization. Previous studies have reported that an elevated triglyceride glucose (TyG) index is significantly associated with the development of AKI in patients with cardiovascular disease, as well as in those undergoing surgery; however, the potential of the TyG index to predict AKI following neurotrauma remains unclear. Patients diagnosed with traumatic brain injury (TBI) in Chinese tertiary hospitals between January 2014 and December 2023 were included in this retrospective study.
View Article and Find Full Text PDFImmun Ageing
January 2025
Institute for Behavioral Medicine Research, Ohio State University, 460 Medical Center Drive, Columbus, OH, 43210, USA.
Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Sapienza University of Rome, Rome, Rome, Italy.
Background: Biological sex influences Alzheimer's disease (AD) development, particularly concerning brain insulin resistance (bIR) and early energy metabolism defects. Biliverdin reductase-A (BVR-A) plays a crucial role in insulin signaling, and its downregulation leads to bIR. However, the sex-related differences in AD neuropathology and underlying mechanisms remain unclear.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: Genome-wide association studies (GWAS) identified the ATP binding cassette subfamily A member 7 (ABCA7) gene as increasing risk for Alzheimer's disease (AD). ABC proteins transport various molecules across extra and intra-cellular membranes. ABCA7 is part of the ABC1 subfamily and is expressed in brain cells including neurons, astrocytes, microglia, endothelial cells and pericytes.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by synapse and memory failure, and severe cognitive impairment. Physical exercise stimulates neuroprotective pathways, has pro-cognitive actions, and has been reported to alleviate memory impairment in AD. Irisin, an exercise-induced hormone, is secreted following proteolytic cleavage of fibronectin type-III-domain-containing 5 (FNDC5).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!