Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In order to more effectively monitor and interfere with enemy signals, it is particularly important to accurately and efficiently identify the intercepted signals and estimate their parameters in the increasingly complex electromagnetic environment. Therefore, in non-cooperative situations, it is of great practical significance to study how to accurately detect direct sequence spread spectrum (DSSS) signals in real time and estimate their parameters. The traditional time-delay correlation algorithm encounters the challenges such as peak energy leakage and false peak interference. As an alternative, this paper introduces a Pseudo-Noise (PN) code period estimation method utilizing a one-dimensional (1D) convolutional neural network based on the residual network (CNN-ResNet). This method transforms the problem of spread spectrum code period estimation into a multi-classification problem of spread spectrum code length estimation. Firstly, the In-phase/Quadrature(I/Q) two-way of the received DSSS signals is directly input into the CNN-ResNet model, which will automatically learn the characteristics of the DSSS signal with different PN code lengths and then estimate the PN code length. Simulation experiments are conducted using a data set with DSSS signals ranging from -20 to 10 dB in terms of signal-to-noise ratios (SNRs). Upon training and verifying the model using BPSK modulation, it is then put to the test with QPSK-modulated signals, and the estimation performance was analyzed through metrics such as loss function, accuracy rate, recall rate, and confusion matrix. The results demonstrate that the 1D CNN-ResNet proposed in this paper is capable of effectively estimating the PN code period of the non-cooperative DSSS signal, exhibiting robust generalization abilities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422606 | PMC |
http://dx.doi.org/10.3390/s23157002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!