A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing Smart Home Security: Anomaly Detection and Face Recognition in Smart Home IoT Devices Using Logit-Boosted CNN Models. | LitMetric

Internet of Things (IoT) devices for the home have made a lot of people's lives better, but their popularity has also raised privacy and safety concerns. This study explores the application of deep learning models for anomaly detection and face recognition in IoT devices within the context of smart homes. Six models, namely, LR-XGB-CNN, LR-GBC-CNN, LR-CBC-CNN, LR-HGBC-CNN, LR-ABC-CNN, and LR-LGBM-CNN, were proposed and evaluated for their performance. The models were trained and tested on labeled datasets of sensor readings and face images, using a range of performance metrics to assess their effectiveness. Performance evaluations were conducted for each of the proposed models, revealing their strengths and areas for improvement. Comparative analysis of the models showed that the LR-HGBC-CNN model consistently outperformed the others in both anomaly detection and face recognition tasks, achieving high accuracy, precision, recall, F1 score, and AUC-ROC values. For anomaly detection, the LR-HGBC-CNN model achieved an accuracy of 94%, a precision of 91%, a recall of 96%, an F1 score of 93%, and an AUC-ROC of 0.96. In face recognition, the LR-HGBC-CNN model demonstrated an accuracy of 88%, precision of 86%, recall of 90%, F1 score of 88%, and an AUC-ROC of 0.92. The models exhibited promising capabilities in detecting anomalies, recognizing faces, and integrating these functionalities within smart home IoT devices. The study's findings underscore the potential of deep learning approaches for enhancing security and privacy in smart homes. However, further research is warranted to evaluate the models' generalizability, explore advanced techniques such as transfer learning and hybrid methods, investigate privacy-preserving mechanisms, and address deployment challenges.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422449PMC
http://dx.doi.org/10.3390/s23156979DOI Listing

Publication Analysis

Top Keywords

anomaly detection
16
face recognition
16
iot devices
16
detection face
12
lr-hgbc-cnn model
12
smart iot
8
deep learning
8
smart homes
8
models
7
face
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!