BoxStacker: Deep Reinforcement Learning for 3D Bin Packing Problem in Virtual Environment of Logistics Systems.

Sensors (Basel)

Department of Industrial and Management System Engineering, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si 17104, Republic of Korea.

Published: August 2023

Manufacturing systems need to be resilient and self-organizing to adapt to unexpected disruptions, such as product changes or rapid order, in supply chain changes while increasing the automation level of robotized logistics processes to cope with the lack of human experts. Deep Reinforcement Learning is a potential solution to solve more complex problems by introducing artificial neural networks in Reinforcement Learning. In this paper, a game engine was used for Deep Reinforcement Learning training, which allows visualization of view learning and result processes more intuitively than other tools, as well as a physical engine for a more realistic problem-solving environment. The present research demonstrates that a Deep Reinforcement Learning model can effectively address the real-time sequential 3D bin packing problem by utilizing a game engine to visualize the environment. The results indicate that this approach holds promise for tackling complex logistical challenges in dynamic settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422206PMC
http://dx.doi.org/10.3390/s23156928DOI Listing

Publication Analysis

Top Keywords

reinforcement learning
20
deep reinforcement
16
bin packing
8
packing problem
8
game engine
8
learning
6
reinforcement
5
boxstacker deep
4
learning bin
4
problem virtual
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!