Light detection and ranging (LiDAR) technology, a cutting-edge advancement in mobile applications, presents a myriad of compelling use cases, including enhancing low-light photography, capturing and sharing 3D images of fascinating objects, and elevating the overall augmented reality (AR) experience. However, its widespread adoption has been hindered by the prohibitive costs and substantial power consumption associated with its implementation in mobile devices. To surmount these obstacles, this paper proposes a low-power, low-cost, single-photon avalanche detector (SPAD)-based system-on-chip (SoC) which packages the microlens arrays (MLAs) and a lightweight RGB-guided sparse depth imaging completion neural network for 3D LiDAR imaging. The proposed SoC integrates an 8 × 8 SPAD macropixel array with time-to-digital converters (TDCs) and a charge pump, fabricated using a 180 nm bipolar-CMOS-DMOS (BCD) process. Initially, the primary function of this SoC was limited to serving as a ranging sensor. A random MLA-based homogenizing diffuser efficiently transforms Gaussian beams into flat-topped beams with a 45° field of view (FOV), enabling flash projection at the transmitter. To further enhance resolution and broaden application possibilities, a lightweight neural network employing RGB-guided sparse depth complementation is proposed, enabling a substantial expansion of image resolution from 8 × 8 to quarter video graphics array level (QVGA; 256 × 256). Experimental results demonstrate the effectiveness and stability of the hardware encompassing the SoC and optical system, as well as the lightweight features and accuracy of the algorithmic neural network. The state-of-the-art SoC-neural network solution offers a promising and inspiring foundation for developing consumer-level 3D imaging applications on mobile devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422305PMC
http://dx.doi.org/10.3390/s23156927DOI Listing

Publication Analysis

Top Keywords

neural network
16
256 256
8
lidar imaging
8
lightweight rgb-guided
8
completion neural
8
mobile devices
8
rgb-guided sparse
8
sparse depth
8
soc
5
network
5

Similar Publications

Objectives: Parkinson's disease (PD) is characterized by olfactory dysfunction (OD) and cognitive deficits at its early stages, yet the link between OD and cognitive deficits is also not well-understood. This study aims to examine the changes in the olfactory network associated with OD and their relationship with cognitive function in de novo PD patients.

Methods: A total of 116 drug-naïve PD patients and 51 healthy controls (HCs) were recruited for this study.

View Article and Find Full Text PDF

Unlabelled: Neurophysiology studies propose that predictive coding is implemented via alpha/beta (8-30 Hz) rhythms that prepare specific pathways to process predicted inputs. This leads to a state of relative inhibition, reducing feedforward gamma (40-90 Hz) rhythms and spiking to predictable inputs. We refer to this model as predictive routing.

View Article and Find Full Text PDF

Animals capable of complex behaviors tend to have more distinct brain areas than simpler organisms, and artificial networks that perform many tasks tend to self-organize into modules (1-3). This suggests that different brain areas serve distinct functions supporting complex behavior. However, a common observation is that essentially anything that an animal senses, knows, or does can be decoded from neural activity in any brain area (4-6).

View Article and Find Full Text PDF

Recent advances of artificial intelligence (AI) in retinal imaging found its application in two major categories: discriminative and generative AI. For discriminative tasks, conventional convolutional neural networks (CNNs) are still major AI techniques. Vision transformers (ViT), inspired by the transformer architecture in natural language processing, has emerged as useful techniques for discriminating retinal images.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is an invaluable method of choice for anatomical and functional in vivo imaging of the brain. Still, accurate delineation of the brain structures remains a crucial task of MR image evaluation. This study presents a novel analytical algorithm developed in MATLAB for the automatic segmentation of cerebrospinal fluid (CSF) spaces in preclinical non-contrast MR images of the mouse brain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!